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Abstract: In this paper, we introduce the notion of (strong) harmonious
number of a graph, and provide a necessary condition for a graph to have
finite harmonious number. We also provide sufficient conditions for a graph
to have infinite (strong) harmonious number. In addition, we examine the
relations between (strong) harmonious numbers and other parameters that
have previously been studied in the area of graph labelings. As applications
of these, we determine the formulas for the (strong) harmonious numbers
of some 2-regular graphs and all complete bipartite graphs, which lead us
to formulas for other parameters of the same classes of graphs.

1 Introduction

In this paper, we will deal only with finite graphs without loops or multiple
edges. Notation will be standard, and we will follow the notation in [2].
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The vertex set and edge set of a graph G are denoted by V (G) and E (G),
respectively. Given any two graphs G and H, their union, denoted by
G ∪ H, is the graph with V (G ∪H) = V (G) ∪ V (H) and E (G ∪H) =
E (G)∪E (H). The union of any finite number of graphs is defined similarly.
For integers a and b with a ≤ b, the set {x ∈ Z|a ≤ x ≤ b} is denoted by
[a, b], where Z denotes the set of integers.

An extensive survey of graph labelings as well as their applications has
been written by Gallian [9]. As he pointed out in his survey, most graph
labeling methods trace their origin to one introduced by Rosa [22] in 1967 or
one given by Graham and Sloane [12] in 1980. Rosa [22] called a function
f a β-valuation of a graph G with q edges if f : V (G) → [0, q] is an
injective function such that each uv ∈ E (G) is labeled |f (u)− f (v)| and
the resulting edge labels are distinct. A few years later, Golomb [11] called
such labelings graceful and this is the term that has been most commonly
used since then. A graceful graph is a graph that has a graceful labeling.
Rosa [22] also introduced the concept of α-valuations (a particular type
of graceful labelings) as a tool for decomposing the complete graph into
isomorphic subgraphs. A graceful labeling f of a graph G is called an
α-valuation if there exists an integer λ so that min {f(u), f(v)} ≤ λ <
max{f(u), f(v)} for each uv ∈ E(G). It follows that a graph that admits
an α-valuation is necessarily bipartite.

The gamma-number, γ (G), of a graph G is the smallest positive integer n
for which there exists an injective function f : V (G) → [0, n] such that
each uv ∈ E (G) is labeled |f (u)− f (v)| and the resulting edge labels are
distinct. This definition first appeared in a paper by Golomb [11] who
used the term ‘gracefulness’ and showed that γ (G) < +∞ for every graph
G. If G is a graph of size q with γ (G) = q, then G is graceful. Thus,
the gamma-number of a graph G is a measure of how close G is to being
graceful.

A restriction of the gamma-number was recently introduced in [15]. The
strong gamma-number, γs (G), of a graphG is the smallest positive integer n
such that γ (G) = n with the additional property that there exists an integer
λ so that min {f (u) , f (v)} ≤ λ < max {f (u) , f (v)} for each uv ∈ E (G).
The strong gamma-number is defined to be +∞, otherwise. It is clear that
if G is a graph such that γs (G) < +∞, then G is necessarily bipartite.
The converse is also shown to be true in [15]. If G is a graph of size q with
γs (G) = q, then G has an α-valuation. Thus, the strong gamma-number
of a graph G can be regarded as a measure of how close G is to having an
α-valuation.
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Harmonious graphs were first studied by Graham and Sloane [12] in connec-
tion with error-correcting codes and channel assignment problems. They
defined a graph G with q edges to be harmonious if there exists an injective
function f : V (G) → Zq such that each uv ∈ E (G) is labeled f(u) + f(v)
(mod q) and the resulting edge labels are distinct. Such a function is called
a harmonious labeling. If G is a tree (so that |E (G)| = |V (G)|−1) exactly
two vertices are labeled the same; otherwise, the definition is the same.

We are now in a position to provide the definitions for the key concepts
that are discussed in this paper. The harmonious number, η (G), of a
graph G with q edges is defined to be either the smallest positive integer
n for which there exists an injective function f : V (G) → Zn+1 such that
each uv ∈ E (G) is labeled f (u) + f (v) (mod q) and the resulting edge
labels are distinct or +∞ if there exists no such integer n. If such functions
exist, then we call them harmonious numberings. The strong harmonious
number, ηs (G), of a graph G is defined to be either the smallest positive
integer n such that η (G) = n with the additional property that there
exists an integer λ so that min {f (u) , f (v)} ≤ λ < max {f (u) , f (v)} for
each uv ∈ E (G) or +∞ if there exists no such integer n. A harmonious
numbering f of a graph G is called a strong harmonious numbering if there
exists an integer λ so that min {f (u) , f (v)} ≤ λ < max {f (u) , f (v)} for
each uv ∈ E (G). As in the case of strong gamma-number, if G is a graph
such that ηs (G) < +∞, then G is necessarily bipartite.

By means of the above definitions, the parameters η (G) and ηs (G) can be
regarded as measures of how close a graph G is to being harmonious, and
we have the following relations among the two parameters.

Lemma 1. If G is a graph of order p other than a tree, then

p− 1 ≤ η (G) ≤ ηs (G) .

The notion of edge-magic labelings was introduced in 1970 by Kotzig and
Rosa [16]. These labelings were originally called magic valuations by them.
These were rediscovered in 1996 by Ringel and Lladó [21] who coined one
of the now popular terms for them: edge-magic labelings. For a graph G
of order p and size q, a bijective function f : V (G) ∪ E(G) → [1, p+ q] is
called an edge-magic labeling if f(u) + f(v) + f(uv) is a constant for each
uv ∈ E(G). If such a labeling exists, then G is called an edge-magic graph.
In 1998, Enomoto et al. [3] defined a slightly restricted version of an edge-
magic labeling f of a graph G by requiring that f (V (G)) = [1, |V (G)|].
Such a labeling was called by them super edge-magic (see [6] and [17] for
the significance of super edge-magic labelings). Thus, a super edge-magic
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graph is a graph that admits a super edge-magic labeling.

Due to the following lemma found in [6], it is sufficient to exhibit the vertex
labeling of a super edge-magic graph.

Lemma 2. A graph G is super edge-magic if and only if there exists a
bijective function f : V (G)→ [1, |V (G)|] such that the set

{f(u) + f(v) |uv ∈ E(G)}

consists of |E (G)| consecutive integers.

In 2001, Muntaner-Batle [18] defined the concept of special super edge-
magic labelings of bipartite graphs. Let G be a bipartite graph with partite
sets X and Y . If G has a super edge-magic labeling f with the property
that f (X) = [1, |X|] and f (Y ) = [|X|+ 1, |V (G)|], then f is called a
special super edge-magic labeling. Oshima [19] subsequently called such
labelings consecutively super edge-magic. In this paper, we prefer to use
the latter terminology to emphasize the property that a consecutively super
edge-magic labeling uses consecutive integers in each partite set. Also, we
refer a bipartite graph with a consecutively super edge-magic labeling as a
consecutively super edge-magic graph.

The following lemma found in [18] provides us with a necessary and suffi-
cient condition for a bipartite graph to be consecutively super edge-magic.

Lemma 3. Let G be a bipartite graph with partite sets X and Y . Then
G is consecutively super edge-magic if and only if there exists a bijective
function f : V (G) → [1, |V (G)|] such that f (X) = [1, |X|], f (Y ) =
[|X|+ 1, |V (G)|] and the set

{f(u) + f(v)|uv ∈ E(G)}

consists of |E (G)| consecutive integers.

For every graph G, Kotzig and Rosa [16] proved that there exists an edge-
magic graph H such that H ∼= G ∪ nK1 for some nonnegative integer n.
This motivated them to define the edge-magic deficiency. The edge-magic
deficiency, µ(G), of a graph G is the smallest nonnegative integer n for
which G ∪ nK1 is edge-magic.

We next provide the definitions for two types of parameters that play an
important role in the study of the (strong) harmonious number.
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Inspired by Kotzig-Rosa notion, the super edge-magic deficiency was anal-
ogously defined by Figueroa-Centeno et al. [8]. The super edge-magic
deficiency, µs(G), of a graph G is either the smallest nonnegative integer n
with the property that G ∪ nK1 is super edge-magic or +∞ if there exists
no such integer n. If G is a graph with µs(G) = 0, then G is super edge-
magic. Thus, the super edge-magic deficiency of a graph G is a measure of
how close G is to being super edge-magic.

The concept of the consecutively super edge-magic deficiency naturally
arose in the study of consecutively super edge-magic properties of graphs
(see [20]). The consecutively super edge-magic deficiency, µc(G), of a
graph G is either the smallest nonnegative integer n with the property
that G ∪ nK1 is consecutively super edge-magic or +∞ if there exists no
such integer n. If G is a graph with µc(G) = 0, then G is consecutively
super edge-magic. Thus, the consecutively super edge-magic deficiency of
a graph G is a measure of how close G is to being consecutively super
edge-magic.

2 Basic results

In this section, we provide a necessary condition for a graph to have finite
harmonious number as well as sufficient conditions for a graph to have
infinite (strong) harmonious number.

An Eulerian circuit of a graph G is a circuit containing all of the edges
and vertices of G. A graph having an Eulerian circuit is called an Eu-
lerian graph. A necessary condition for an Eulerian graph to have finite
harmonious number is presented next.

Lemma 4. If G is an Eulerian graph of even size q such that η (G) < +∞,
then q ≡ 0 (mod 4).

Proof. Let C : x0, x1, . . . , xq−1, xq = x0 be an Eulerian circuit of G, where
q is even, and let η (G) = n for some positive integer n. Then there exists
a harmonious numbering f : V (G) → Zn+1 such that f (xi) = ai for each
i ∈ [0, q], where ai = aj if xi = xj . Thus, the label of the edge xi−1xi is
ai−1 + ai (mod q), which implies that

{ai−1 + ai (mod q)|i ∈ [1, q]} = [0, q − 1] .
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Hence, the sum of the labels of the edges of G is

q∑

i=1

(ai−1 + ai) = 2

q−1∑

i=0

f (xi) ≡ 0 (mod 2),

that is, the sum of the edge labels of G is even. However, the sum of the
edge labels is

q∑

i=1

(ai−1 + ai) ≡
q−1∑

i=0

i ≡ q (q − 1) /2 (mod q);

so q (q − 1) /2 is even. Consequently, 4|q (q − 1), which implies that 4|q or
4|q − 1 so that q ≡ 0 (mod 4), since q is even.

The following result is easily obtained by taking the contraposive of Lemma
4 and then applying Lemma 1.

Corollary 1. If G is an Eulerian graph such that |E (G)| ≡ 2 (mod 4),
then

η (G) = ηs (G) = +∞.

A graph G is defined to be an even graph if all of its vertices have even
degree. With this definition in hand, it is now possible to extend the pre-
ceding corollary to the sufficient condition for an even graph to have infinite
(strong) harmonious number.

Theorem 1. If G is an even graph such that |E (G)| ≡ 2 (mod 4), then

η (G) = ηs (G) = +∞.

Proof. Since G is an even graph, it follows that every component of G is
Eulerian. Let G1, G2, . . . , Gk (k ≥ 1) be the components of G. For
each i ∈ [1, k], let Ci : xi0, x

i
1, . . . , x

i
qi−1, x

i
qi = xi0 be an Eulerian circuit

of Gi, where qi = |E (Gi)|. In light of Lemma 1, it suffices to show that
η (G) = +∞ when G is an even graph such that |E (G)| ≡ 2 (mod 4). For
this purpose, let q = |E (G)| and suppose, to the contrary, that η (G) = n
for some positive integer n. Then there exists a harmonious numbering
f : V (G) → Zn+1 such that f

(
xij
)

= aij for each i ∈ [1, k] and j ∈ [0, qi],

where ais = ait if xis = xit. Thus, the label of the edge xij−1x
i
j is aij−1 + aij

(mod q), which implies that

{
aij−1 + aij (mod q)|i ∈ [1, k] and j ∈ [1, qi]

}
= [0, q − 1] .
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Notice that

qi∑

j=1

(
aij−1 + aij

)
= 2

qi−1∑

j=0

f
(
xij
)
≡ 0 (mod 2)

for all i ∈ [1, k]. Hence, the sum of the labels of edges of G is

k∑

i=1

qi∑

j=1

(
aij−1 + aij

)
≡ 0 (mod 2),

that is, the sum of the edge labels of G is even. However, the sum of edge
labels is

k∑

i=1

qi∑

j=1

(
aij−1 + aij

)
≡

q−1∑

i=0

i ≡ q (q − 1) /2 (mod q).

Consequently, 4|q (q − 1), which implies that 4|q or 4|q − 1 so that q ≡ 0
(mod 4) or q ≡ 1 (mod 4). This contradicts the hypothesis that q ≡ 2
(mod 4).

3 Relations among parameters

In this section, we exhibit the relations between (strong) harmonious num-
bers and parameters that have been discussed in the introduction of this
paper. We also establish lower and upper bounds for the strong harmo-
nious number, which leads us to a sufficient condition for a graph G to
have η (G) = ηs (G). Moreover, we provide a sufficient condition of graphs
G for which µs (G) = µc (G).

We begin with the following result that gives us an upper bound for the
harmonious number of a graph in terms of its super edge-magic deficiency
and order.

Theorem 2. For every graph G of order p,

η (G) ≤ µs (G) + p− 1.

Proof. Let G be a graph of order p and size q. Notice that the result is
trivial when µs (G) = +∞. Thus, assume that µs (G) < +∞, and let
H ∼= G∪nK1, where n = µs (G) for some nonnegative integer n. It follows
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from Lemma 2 that there exists a super edge-magic labeling f : V (H) →
[1, n+ p] such that

{f (u) + f (v) |uv ∈ E (H)} = [s, s+ q − 1] ,

where s = min {f (u) + f (v) |uv ∈ E (H)}. At this point, define the bijec-
tive function g : V (H) → [0, n+ p− 1] such that g (v) = f (v) − 1 for all
v ∈ V (H). If we consider the restriction of g to V (G), then we obtain

{g (u) + g (v) |uv ∈ E (G)} = [s− 2, s+ q − 3] ,

which is a set of q consecutive integers, and

max {g (v) |v ∈ V (G)} ≤ |V (H)| − 1 = n+ p− 1.

It is now immediate that the edge labels induced by g(u) + g(v) (mod q)
for each uv ∈ E (H) are distinct. Therefore, η (G) ≤ n + p − 1, implying
that η (G) ≤ µs (G) + p− 1.

It is important to notice that the bound given in Theorem 2 can be viewed
as a lower bound for the super edge-magic deficiency of a graph, since
previously nontrivial lower bound was not available for this parameter.

The following result provides us with an upper bound for the harmonious
number of a graph in terms of its consecutively super edge-magic deficiency
and order.

Theorem 3. For every graph G of order p,

ηs (G) ≤ µc (G) + p− 1.

Proof. Without loss of generality, assume that G is a bipartite graph of
order p and size q such that µc (G) < +∞; otherwise, the result is trivial.
Let H ∼= G ∪ nK1, where n = µc (G) for some nonnegative integer n, and
let X and Y be the partite sets of H, where |X| = x and |Y | = y. By
means of Lemma 3, there exists a consecutively super edge-magic labeling
f : V (H)→ [1, n+ p] such that f (X) = [1, x], f (Y ) = [x+ 1, n+ p] and

{f (u) + f (v) |uv ∈ E (G)} = [s, s+ q − 1] ,

where s = min {f (u) + f (v) |uv ∈ E (H)}. Then the bijective function
g : V (H) → [0, n+ p− 1] defined by g (v) = f (v) − 1 for all v ∈ V (H)
provides that

g (X) = [0, x− 1] and g (Y ) = [x, n+ p− 1] ,
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and
g (u) + g (v) = f (u) + f (v)− 2

for each uv ∈ E (H), where u ∈ X and v ∈ Y . If we consider the restriction
of g to V (G), then we obtain

{g (u) + g (v) |uv ∈ E (G)} = [s− 2, s+ q − 3] ,

which is a set of q consecutive integers, and

max {g (v) |v ∈ V (G)} ≤ |V (H)| − 1 = n+ p− 1.

It is now immediate that the edge labels induced by g(u) + g(v) (mod q)
for each uv ∈ E (H) are distinct. Therefore, ηs (G) ≤ n + p − 1, implying
that ηs (G) ≤ µc (G) + p− 1.

It is interesting to notice that the bound presented in Theorem 3 can be
viewed as a lower bound for the consecutively super edge-magic deficiency
of a graph, since previously nontrivial lower bound was not known for this
parameter.

Another parameter that plays an important role in the study of the strong
harmonious number is the alpha-number defined and studied in [20]. The
alpha-number, α (G), of a graph G is the smallest positive integer n for
which there exists an injective function f : V (G) → [0, n] such that each
uv ∈ E (G) is labeled |f (u)− f (v)| and the resulting set of edge labels is
[c, c+ |E (G)| − 1] for some positive integer c. Furthermore, the additional
property that there exists an integer λ so that min {f(u), f(v)} ≤ λ <
max{f(u), f(v)} for each uv ∈ E(G) is required. The alpha-number of G
is defined to be +∞, otherwise. If G is a graph of size q with α (G) = q,
then G has an α-valuation. Thus, the alpha-number of a graph G can be
regarded as a measure of how close G is to having an α-valuation.

The following result provides us with lower and upper bounds for the strong
harmonious number of a graph in terms of the strong gamma-number and
alpha-number.

Theorem 4. For every graph G,

γs (G) ≤ ηs (G) ≤ α (G) .

Proof. The upper bound for ηs (G) is a direct consequence of Theorem 3
and the fact obtained in [14] that α (G) = µc (G) + p− 1 for every graph G
of order p.
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To verify the lower bound, assume that G is a bipartite graph and ηs (G) <
+∞; otherwise, the lower bound is immediate. Then there exists some
positive integer n such that n = ηs (G). It follows that there exists a strong
harmonious numbering f : V (G)→ Zn+1, and hence there exists an integer
λ so that min {f (u) , f (v)} ≤ λ < max {f (u) , f (v)} for each uv ∈ E (G).
Without loss of generality, let G have partite sets

U = {v ∈ V (G) |f (v) ≤ λ} and V = {v ∈ V (G) |f (v) > λ} .

Now, consider the function g : V (G)→ Zn+1 such that

g (v) =

{
λ− f (v) if v ∈ U ,
f (v) if v ∈ V .

Notice then that min {g (v) |v ∈ V } > max {g (v) |v ∈ U}. This implies that

|g (u)− g (v)| = g (v)− g (u) = f (u) + f (v)− λ

for each uv ∈ E (G), where u ∈ U and v ∈ V . Notice also that

f (u) + f (v) ≥ λ+ 1

for any uv ∈ E (G). This implies that

|g (u)− g (v)| ≥ 1

for any uv ∈ E (G). Moreover, since the edge labels induced by f (u)+f (v)
for each uv ∈ E (G) are distinct modulo |E (G)|, it follows that the edge
labels induced by |g (u)− g (v)| for each uv ∈ E (G) are distinct. It only
remains to notice that g is an injective function with the property that

min {g (u) , g (v)} ≤ λ < max {g (u) , g (v)}

for each uv ∈ E (G), and

max {g (v) |v ∈ V (G)} = max {g (v) |v ∈ V } = n.

Therefore, γs (G) ≤ n, implying that γs (G) ≤ ηs (G).

The bounds given in Theorem 4 are sharp. To see this, notice that every
star K1,n has an α-valuation by labeling the central vertex with 0 and the
remaining vertices with 1 through n. This implies that α (K1,n) ≤ n for
every positive integer n. It is observed in [15] that γs (G) ≥ max {p− 1, q}
for every graph G of order p and size q. This provides that γs (K1,n) ≥ n
for every positive integer n. By Theorem 4,

γs (K1,n) = ηs (K1,n) = α (K1,n) = n
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for every positive integer n.

The upper bound presented in Theorem 4 together with Lemma 1 implies
the following result, which provides us with a sufficient condition for a graph
G to have η (G) = ηs (G).

Corollary 2. If G is a graph with an α-valuation that is not harmonious,
then

η (G) = ηs (G) = |E (G)| .

Later on, the above result will prove to be useful for computing the (strong)
harmonious numbers of some graphs.

To present our next result, some definitions are required. The notion of
sequential labelings was introduced in 1983 by Grace [10]. For a graph G of
size q, an injective function f : V (G)→ [0, q − 1] (with the label q allowed
if G is a tree) is called a sequential labeling if each uv ∈ E (G) is labeled
f (u) + f (v) and the resulting set of edge labels is [c, c+ q − 1] for some
positive integer c. If such a labeling exists, then G is called a sequential
graph.

We now consider the parameter that can be regarded as a measure of how
close a graph is to being sequential. The concept of sequential number was
first introduced in [5] for graphs without isolated vertices and was recently
extended in [14] for any graph. The sequential number, σ (G), of a graph G
with q edges is either the smallest positive integer n for which there exists
an injective function f : V (G)→ [0, n] such that each uv ∈ E (G) is labeled
f (u) + f (v) and the resulting set of edge labels is [c, c+ q − 1] for some
positive integer c or +∞ if there exists no such integer n.

It is known from [14] that if a graph G has an α-valuation and is not
sequential, then σ (G) = |E (G)|. This implies that if G has an α-valuation
and is not harmonious, then σ (G) = |E (G)|. It is also known from [14]
that µs (G) = σ (G) + |V (G)| − 1, implying that if G is a graph with an
α-valuation that is not harmonious, then µs (G) = |E (G)| − |V (G)| + 1.
On the other hand, it was observed in [13] that if G is a graph with an
α-valuation, then µc (G) = |E (G)| − |V (G)|+ 1. Summarizing these facts,
we have the following relation, which provides us with a sufficient condition
for a graph G to have µs (G) = µc (G).

Corollary 3. If G is a graph with an α-valuation that is not harmonious,
then

µs (G) = µc (G) = |E (G)| − |V (G)|+ 1.
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From Corollaries 2 and 3, we arrive at the following two relations, which will
later serve as the tools for computing the (consecutively) super edge-magic
deficiencies of some graphs.

Corollary 4. If G is a graph with an α-valuation that is not harmonious,
then

η (G) = µs (G) + |V (G)| − 1.

Corollary 5. If G is a graph with an α-valuation that is not harmonious,
then

ηs (G) = µc (G) + |V (G)| − 1.

We end this section with remarks on the relations obtained in the preceding
two corollaries.

Notice that the relation of Corollary 4 shows the sharpness of the bound
presented in Theorem 2, and that the problems of determining the har-
monious number and the super edge-magic deficiency of certain graphs are
equivalent. Notice also that the relation of Corollary 5 shows the sharpness
of the bound given in Theorem 3, and that the problems of determining
the strong harmonious number and the consecutively super edge-magic de-
ficiency of certain graphs are equivalent.

4 Applications

As applications of Theorem 1 and Corollary 2, we determine, in this section,
the (strong) harmonious numbers for some 2-regular graphs and all com-
plete bipartite graphs. These together with Corollary 5 lead us to formulas
for the consecutively super edge-magic deficiencies of the same classes of
graphs.

To proceed, we mention the previously known results on 2-regular graphs.
Youssef [24] obtained a harmonious labeling of the 2-regular graph mCn

if both m and n are odd, while Seoud et al. [23] observed that the 2-
regular graph mCn is not harmonious if either m or n is even. Rosa [22]
verified that the cycle Cn has an α-valuation if and only if n ≡ 0 (mod 4).
Abrham and Kotzig [1] proved that the 2-regular graph Cm ∪ Cn has an
α-valuation if and only if both m and n are even, and m+ n ≡ 0 (mod 4).
This implies that the 2-regular graph 2Cn has an α-valuation if and only if
n is even. Eshghi [4] established that every 2-regular bipartite graph with
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three components has an α-valuation if and only if the number of edges is
a multiple of four except for 3C4.

Note that η (3C4) ≤ 12 is obtained by labeling the cycles in 3C4 with

0− 7− 2− 8− 0, 1− 5− 6− 11− 1, 3− 10− 4− 12− 3,

whereas ηs (3C4) ≤ 13 is obtained by labeling the cycles in 3C4 with

0− 6− 1− 8− 0, 3− 7− 5− 11− 3, 2− 9− 4− 13− 2.

Applying Theorem 1 and Corollary 2 with the aforementioned results on
2-regular graphs, we obtain the following formulas.

• η (Cn) =





n− 1 if n is odd,
n if n ≡ 0 (mod 4),
+∞ if n ≡ 2 (mod 4).

• ηs (Cn) =

{
n if n ≡ 0 (mod 4),
+∞ if n is odd or n ≡ 2 (mod 4).

• η (2Cn) = ηs (2Cn) =

{
2n if n is even,
+∞ if n is odd.

• η (3Cn) =





3n− 1 if n is odd,
3n if n ≡ 0 (mod 4),
+∞ if n ≡ 2 (mod 4).

• ηs (3Cn) =





3n+ 1 if n = 4,
3n if n ≥ 8 and n ≡ 0 (mod 4),
+∞ if n is odd or n ≡ 2 (mod 4).

As we have seen in the previous section, ηs (K1,n) = n for every positive
integer n. We now turn our attention briefly to the harmonious num-
ber of stars. For every positive integer n, the star K1,n is harmonious
by labeling the central vertex with 0 and the remaining vertices with 0
through n − 1, which implies that η (K1,n) ≤ n − 1. On the other hand,
we have η (K1,n) ≥ n − 1 for every positive integer n, since it is true that
η (G) ≥ min {p− 1, q − 1} for every graph G of order p and size q. This
establishes that η (K1,n) = n− 1 for every positive integer n.

We next consider a formula for the (strong) harmonious number of the
complete bipartite graph that is not a star. Graham and Sloane [12] proved
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that the complete bipartite graph Km,n is harmonious if and only if either
m = 1 or n = 1. On the other hand, Rosa [22] showed that every complete
bipartite graph Km,n has an α-valuation. It follows by Corollary 2 that
η (Km,n) = ηs (Km,n) = mn for every two integers m and n with m ≥ 2
and n ≥ 2.

We end this section with applications of Corollaries 2 and 4.

Notice that the results on harmonious numbers found in this section and
Corollary 4 give us the formulas for µs (Cn), µs (2Cn) and µs (3Cn), which
were obtained in [7, 8], with relative ease.

Notice also that µs (K1,n) = 0 for every positive integer n (by labeling the
central vertex with 1 and the remaining vertices with 2 through n + 1).
For every two integers m and n with m ≥ 2 and n ≥ 2, the formula
µs (Km,n) = (m− 1) (n− 1) is obtained by applying the above result on
η (Km,n) and Corollary 4. Thus, we have the following formula.

• µs (Km,n) = (m− 1) (n− 1) for all positive integers m and n.

In the above, we resolve a conjecture of Figueroa-Centeno et al. [8] (see
also [5] for an alternative proof).

Finally, notice that the results on strong harmonious numbers found in this
section and Corollary 5 provide us with the following formulas.

• µc (Cn) =

{
1 if n ≡ 0 (mod 4),
+∞ if n is odd or n ≡ 2 (mod 4).

• µc (2Cn) =

{
1 if n is even,
+∞ if n is odd.

• µc (3Cn) =





2 if n = 4,
1 if n ≥ 8 and n ≡ 0 (mod 4),
+∞ if n is odd or n ≡ 2 (mod 4).

• µc (Km,n) = (m− 1) (n− 1) for all positive integers m and n.
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