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Abstract

In a 1993 technical report, Elias Dahlhaus described what he
called “good generalized strongly chordal graphs,” a natural strength-
ening of a generalization of the standard strengthening of chordal
graphs. We present a new, more conventional characterization of
this proposed graph class and then show that the proposed class
is precisely the intersection of two better-known graph classes—the
i-triangulated graphs of Gallai (1962) and the strongly orderable
graphs of Dragan (2000).

We begin by describing several graph classes in terms of orderings of their
vertex sets, as is important when dealing with algorithmic applications.
There are additional characterizations (and even alternative notions of elim-
ination orderings) of these classes in [2]; also see [3, 5, 6]. These order-
theoretic definitions are only included as background; the graph-theoretic
characterization of “generalized strongly chordal graphs” that will be given
in Proposition 1 can most easily be used as their definition in reading this
paper. Indeed, everything before Proposition 1 can be considered to be for
background purposes only.

A graph is chordal if every cycle of length 4 or more has a chord. It has
been observed many times since the 1960s (see [2]) that a graph G is chordal
if and only if its vertex set V (G) can be ordered by a perfect elimination
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ordering (this is the terminology in [2, 3]; it is called a simplicial ordering
in [5]), which is defined to be any ordering that satisfies condition C1, where

C1: If a < b and a < c with ab, ac ∈ E(G), then bc ∈ E(G).

As in Farber [6], a graph G is strongly chordal if V (G) can be ordered
by a strong perfect elimination ordering (in [2, 3, 6], or a strong simplicial
ordering in [5]), which is defined to be any ordering that satisfies both
conditions C1 and C2, where

C2: If a < d and b < c with ab, ac, bd ∈ E(G), then cd ∈ E(G).

See [2] for much more information on both chordal and strongly chordal
graphs, including many of their standard graph-theoretic characterizations.

In [3], Dahlhaus defined a graph G to be generalized strongly chordal (now
always called strongly orderable, starting with Dragan in [5]) if V (G) can be
ordered by a generalized strong perfect elimination ordering (in [3], called a
strong ordering in [2, 5]), which is defined to be any ordering that satisfies
condition C2.

Dahlhaus proceeded to strengthen (or, as he wrote, to “improve”) the def-
inition of generalized strongly chordal graphs by further assuming that
the generalized strongly perfect elimination ordering can always be cho-
sen to end at a preselected arbitrary vertex (as is the case for [strongly]
perfect elimination orderings of [strongly] chordal graphs). He used the
verb “improve” because his proposed strengthening of the class of gener-
alized strongly chordal graphs still contains the class of strongly chordal
graphs, and so still generalizes strongly chordal graphs. He called the re-
sulting graphs the good generalized strongly chordal graphs—which we will
abbreviate as the GGSC graphs—and proved the cycle-and-chord charac-
terization that is rephrased below as Proposition 1. In it, a ≥k-cycle is a
cycle of length at least k, and a chord xy of an even cycle C is a strong
chord (as in [6]; it is called an odd chord in [2]) of C if the two x-to-y
subpaths of C have odd lengths. Note that in condition 〈1.1〉, v can be
either an endpoint or an internal vertex of the subpath of C.

Proposition 1 (Dahlhaus) A graph is GGSC if and only if both the fol-
lowing hold :
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〈1.1〉 For every odd ≥5-cycle C and every v ∈ V (C), there is a chord xy of
C such that v is a vertex of the even-length x-to-y subpath of C.

〈1.2〉 Every even ≥6-cycle has a strong chord.

Figure 1 shows the eight graphs that can be induced by the vertex set of
a 5-cycle C. The three graphs in the top row are not GGSC graphs, since
〈1.1〉 is violated by C and the vertex labeled v. Check that the five graphs
in the bottom row are GGSC graphs.
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Figure 1: The graphs that can be induced by the vertices of a 5-cycle.

Farber [6] proved that a graph is strongly chordal if and only if it is
chordal and every even ≥6-cycle has a strong chord. Dahlhaus, Manuel,
and Miller [4] proved that a graph is strongly chordal if and only if it is
chordal and every ≥5-cycle C has a 2-chord triangle, which is defined as a
triangle formed by two chords of C and one edge of C. The following shows
how GGSC graphs capture a bit of each of these.

Theorem 2 A graph is GGSC if and only if both the following hold :

〈2.1〉 Every odd ≥5-cycle has a 2-chord triangle.

〈2.2〉 Every even ≥6-cycle has a strong chord.

Proof. For the “only if” direction, suppose G is GGSC, arguing by in-
duction on n ≥ 5 for n-cycles C. We can assume that n is odd (otherwise
C already has a strong chord by Proposition 1). The n = 5 basis case
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follows by checking that all ≥5-cycles of the five graphs in the bottom row
of Figure 1—the five GGSC graphs—have 2-chord triangles.

For the n ≥ 7 induction step, Proposition 1 ensures that C has a chord xy.
Suppose xy combines with the two x-to-y subpaths of C to form a k1-cycle
C1 and a k2-cycle C2 where k1 ≤ k2 and k1 + k2 = n + 2, and assume
that xy has been chosen so as to make k1 as small as possible, and so C1

chordless. Thus, G being GGSC ensures k1 6≥ 5, and so k1 ∈ {3, 4}.

Suppose for the moment that k1 = 4 with (say) π = x, x′, y′, y a subpath
of C1. Since n is odd, k2 = n − 2 ≥ 5 is odd, and so C2 has a 2-chord
triangle ∆ by the induction hypothesis. We can assume that xy ∈ E(∆)
(otherwise ∆ already is a 2-chord triangle of C); say ∆ = wxy where wx
and wy are chords of C2. We can assume that w is not adjacent to either
x′ or y′ (otherwise wxx′ or wyy′ already is a 2-chord triangle of C). Since
C1 is chordless, the 5-cycle formed from the path π and the edges wx and
wy would have the unique chord xy, contradicting that G is GGSC.

Hence we can assume that k1 = 3, say with C1 the triangle xyz. Since n
is odd, k2 = n − 1 ≥ 6 is even, and so C2 has a strong chord ad by the
inductive hypothesis with the four vertices x, y, a, d coming in that order
around C2 (possibly with a = y or d = x). By repeatedly applying this
argument to the even cycle formed by the edge ad and the a-to-d subpath
of C − z, we can further assume that the chord ad has been chosen so as
to partition C into two a-to-d subpaths as follows: a subpath π = a, b, c, d
of C2 and a subpath τ of C through z. We can now assume that a and c
are not adjacent and that b and d are not adjacent (otherwise acd or abd
already is a 2-chord triangle of C). Let C ′ be the odd ≥5-cycle formed
by the path τ and the edge ad. Since C ′ has a 2-chord triangle ∆ by the
induction hypothesis, we can assume that ad ∈ E(∆) (otherwise ∆ already
is a 2-chord triangle of C); say ∆ = adw with w ∈ V (τ). Since G is GGSC,
checking the five GGSC graphs in the bottom row of Figure 1 for the 5-cycle
formed from the path π and the edges aw and dw (actually, only the second
of these five has a candidate) shows that the 5-cycle must have chords bw
and cw, and so bcw will be a 2-chord triangle of C.

For the “if” direction, suppose G satisfies conditions 〈2.1〉 and 〈2.2〉 and C
is an n-cycle of G with n ≥ 5 (toward showing that 〈1.1〉 and 〈1.2〉 hold).
Since 〈2.2〉 ensures that 〈1.2〉 holds when n is even, we can assume that
n is odd. By 〈2.1〉, C has a 2-chord triangle abw with chords aw and bw
of C and ab ∈ E(C). Thus, every v ∈ V (C) is in both an a-to-w and a
b-to-w subpath of C, one of which will have even length. Therefore, 〈1.1〉
also holds, and so G is a GGSC graph by Proposition 1. 2
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Two chords ab and cd of a cycle C are called crossing chords if their end-
points are distinct and come in the order a, c, b, d around C; otherwise,
they are noncrossing chords. The i-triangulated graphs were introduced by
Gallai in [7], where they were characterized by every odd ≥5-cycle having
noncrossing chords; also see [1, 8]. Recall that the strongly orderable graphs
were introduced by Dragan in [5] to be exactly the same as the generalized
strongly chordal graphs from [3]. Reference [2] contains further information
on both of these graph classes, and Theorem 3 shows how GGSC graphs
combine them.

Theorem 3 A graph is GGSC if and only if it is both i-triangulated and
strongly orderable.

Proof. First suppose G is a GGSC graph. By Theorem 2, every odd ≥5-
cycle C of G has a 2-chord triangle, so C has two noncrossing chords, and
so G is an i-triangulated graph by the characterization from [7] mentioned
above. Since every GGSC graph is generalized strongly chordal as in [2], G
is a strongly orderable graph by [5].

Conversely, suppose G is i-triangulated and strongly orderable, and C is an
arbitrary odd ≥5-cycle of G with v ∈ V (C). Since G is i-triangulated, [1,
Thm. 16.10] (or [8, Thm. 3]) ensures that, for every edge vw of C, there is
a vertex z of C that forms a triangle with vw. Thus, for every vertex v of
C, there is a chord xy of C (namely, vz or wz) such that v is a vertex of
the even-length x-to-y subpath of C, and so G satisfies 〈1.1〉. Since G is
strongly orderable, [3, Thm. 1] ensures that every even ≥6-cycle of G has a
strong chord, and so G satisfies 〈1.2〉. Therefore, by Proposition 1, G is a
GGSC graph. 2
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