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Abstract

An edge coloring of a graph G is proper if every two adjacent
edges of G have different colors. A graph G is Hamiltonian-connected
if every two vertices of G are connected by a Hamiltonian path.
An edge coloring of a Hamiltonian-connected graph G is a proper
Hamiltonian-path coloring if every two vertices of G are connected
by a properly colored Hamiltonian path. The minimum number
of colors in a proper Hamiltonian-path coloring of G is the proper
Hamiltonian-connection number of G. Proper Hamiltonian-connection
numbers are determined for several classes of Hamiltonian-connected
graphs.
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oring , proper Hamiltonian-connection number.
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1 Introduction

A Hamiltonian cycle in a graph G is a cycle containing every vertex of G and
a graph having a Hamiltonian cycle is a Hamiltonian graph. A Hamiltonian
path in a graph G is a path containing every vertex of G. A graph G is
Hamiltonian-connected if G contains a Hamiltonian u — v path for every
pair u, v of distinct vertices of G. For a graph G, let §(G) and A(G) denote
the minimum and maximum degree of G, respectively, and for a nontrivial
graph G, let 02(G) = min{degu + degv : uv ¢ E(G)} where degw is the
degree of a vertex w in G. Ore [14] proved the following results in 1963.
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Theorem 1.1. If G is a graph of order n > 4 such that 03(G) > n+1,
then G is Hamiltonian-connected.
Corollary 1.2. IfG is a graph of order n > 4 such that 6(G) > (n+1)/2,
then G is Hamiltonian-connected.

During 1960-1980, there was a great deal of research activity involving
Hamiltonian properties of powers of graphs. For a connected graph G and
a positive integer k, the kth power G* of G is that graph whose vertex set
is V(@) such that uv is an edge of G¥ if 1 < dg(u,v) < k where dg(u,v) is
the distance between two vertices w and v in G (or the length of a shortest
u — v path in G). The graph G? is called the square of G and G® the cube
of G. In 1960, Sekanina [13] proved the following result.

Theorem 1.3. If G is a nontrivial connected graph, then the cube of G is
Hamiltonian-connected.

In the 1960s, it was conjectured independently by Nash-Williams [12] and
Plummer (see [6, p.139]) that the square of every 2-connected graph is
Hamiltonian. In 1974, Fleischner [7] verified this conjecture. Also, in 1974
and using Fleischner’s result, Chartrand, Hobbs, Jung, Kapoor and Nash-
Williams [4] proved the following.

Theorem 1.4. If G is a 2-connected graph, then the square of the graph G
is Hamiltonian-connected. In particular, the square of every Hamiltonian
graph is Hamiltonian-connected.

A proper edge coloring ¢ of a nonempty graph G is a function ¢ on E(G)
with the property that c(e) # ¢(f) for every two adjacent edges e and f
of G. If the colors are chosen from a set of k colors, then c is called a
k-edge coloring of G. The minimum positive integer k for which G has a
proper k-edge coloring is called the chromatic index of G and is denoted by
X'(G). Tt is immediate for every nonempty graph G that x'(G) > A(G).
The most important theorem dealing with chromatic index is one obtained
by Vizing [15].

Theorem 1.5. (Vizing’s Theorem) For every nonempty graph G,

Y(G) < AG) + 1.

As a result of Vizing’s theorem, the chromatic index of every nonempty
graph G is one of two numbers, namely A(G) or A(G) + 1.

A rainbow coloring of a connected graph G is an edge coloring ¢ of G with
the property that for every two vertices u and v of G, there exists a u — v
rainbow path (no two edges of the path are colored the same). In this case,
G is rainbow-connected (with respect to ¢). The minimum number of colors
needed for a rainbow coloring of G is referred to as the rainbow connection
number of G. These concepts were introduced and studied by Chartrand,
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Johns, McKeon and Zhang in 2006. The first paper [5] on this topic was
published in 2008. In recent years, this topic has been studied by many
and there is a book [10] on rainbow colorings, published in 2012. In 2016,
Hamiltonian-connected rainbow colorings were introduced by Chartrand
and studied by Bi, Byers and Zhang [1]. An edge coloring of a Hamiltonian-
connected graph G is a Hamiltonian-connected rainbow coloring if every two
vertices of G are connected by a rainbow Hamiltonian path. The minimum
number of colors required of a Hamiltonian-connected rainbow coloring
of G is the rainbow Hamiltonian-connection number of G. Here we study
the corresponding concept for proper edge colorings.

Let G be an edge-colored connected graph, where adjacent edges may be
colored the same. A path P in G is properly colored or, more simply, P is
a proper path in G if no two adjacent edges of P are colored the same. An
edge coloring c is a proper-path coloring of a connected graph G if every
pair u, v of distinct vertices of G are connected by a proper u —v path in G.
If k colors are used, then c is referred to as a proper-path k-coloring. The
minimum k& for which G has a proper-path k-coloring is called the proper
connection number of G. Recently, this topic has been studied by many
(see [2, 3] for example). In fact, there is a dynamic survey of this topic due
to Li and Magnant [9].

2 Proper Hamiltonian-Path Colorings

If G is a Hamiltonian-connected graph with a proper edge coloring, then for
every two vertices v and v of G, there is a proper Hamiltonian u — v path
in G. However, if our primary interest concerns edge colorings of graphs G
with the property that for every two vertices u and v of G, there exists a
proper Hamiltonian u — v path in G, then this may very well be possible
using fewer than x’(G) colors. Of course, graphs possessing such edge color-
ings are necessarily Hamiltonian-connected. For a Hamiltonian-connected
graph G, an edge coloring ¢ : E(G) — [k] is a proper Hamiltonian-path
k-coloring if every two vertices of G are connected by a proper Hamiltonian
path in G. An edge coloring c is a proper Hamiltonian-path coloring if ¢
is a proper Hamiltonian-path k-coloring for some positive integer k. The
minimum number of colors in a proper Hamiltonian-path coloring of G is
the proper Hamiltonian-connection number of G, denoted by hpc(G). Since
every proper edge coloring of a Hamiltonian-connected graph G is a proper
Hamiltonian-path coloring of G and there is no proper Hamiltonian-path
1-coloring of G, it follows that

2 < hpe(G) < Y(G). (1)
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To illustrate these concepts, consider the graph G = CZ. Since A(G) = 4
and the edge coloring of G in Figure 1(a) is a proper 4-edge coloring, it
follows that x'(G) = A(G) = 4. Next, consider the 2-edge coloring ¢ of G
shown in Figure 1(b).

U1
V6 v2
2
3 2 2
1 1 2
3 2 2
2
Vs U3
2 X 1
on

Figure 1: A proper 4-edge coloring and a
proper Hamiltonian-path 2-coloring of Cg

We show that c is a proper Hamiltonian-path coloring of G; that is, every
two vertices u and v of G are connected by a proper Hamiltonian u — v
path P in G. If {u,v} = {v1,v2} or {u,v} = {v1,ve}, say the former,
let P = (v1,v6, s, 04,03,02); if {u,v} = {v1,v3} or {u,v} = {v1,v5}, say
the former, let P = (vy,v2,vs, V5,04, v3); while if {u,v} = {v1,v4}, let
P = (v1,v2, vg, U5, v3,v4). By the symmetry of this edge coloring, ¢ is proper
a Hamiltonian-path 2-coloring and so hpce(G) = 2. Thus, hpe(G) < X/'(G).

Next, we give an example of a graph G with hpc(G) = X'(G). Let G =
K5 O Ks, where the two triangles K3 in G are (u,z,w,u) and (v,y,z,v)
and uv, zy,wz € E(G). Since there is a proper 3-edge coloring of G shown
in Figure 2 and A(G) = 3, it follows that x'(G) = 3. Hence, hpc(G) < 3.

Figure 2: A proper 3-edge coloring of K3 [0 Ky

We now show that hpe(G) > 3. Assume, to the contrary, that there is a
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proper Hamiltonian-path 2-coloring ¢ of G using the colors red (color 1)
and blue (color 2). There are only two Hamiltonian v — v paths, namely
(u,w,z,y,2z,v) and (u,x,w,z,y,v). Because of the symmetry of these
paths, we may assume that the first path is a proper Hamiltonian u—v path
and whose edges are colored as c(uw) = c¢(zy) = c¢(zv) = 1 and c(wzx) =
c(yz) = 2. Next, we consider a proper Hamiltonian x — z path. There
are only two Hamiltonian « — z paths in G, namely, Q1 = (z,w,u,v,y, z)
and Q2 = (z,y,v,u,w, z). Since the path @ = (w,u,v,y) lies on both @1
and @2, it follows that  must be proper. This implies that c(uv) = 2
and c¢(vy) = 1. Similarly, there are only two Hamiltonian w — y paths in
G, each of which contains the path (z,u,v,z), and so this path must be
proper. This implies that c(uz) = 1. We now consider a proper Hamil-
tonian z — v path. There are only two Hamiltonian x — v paths in G,
namely, Ry = (z,u,w,z,y,v) and Ry = (x,y,z,w,u,v). Since the path
R = (y, z,w,u) lies on both Ry and Ra, it follows that R must be properly
colored by the colors 1 and 2. Since c¢(yz) = 2 and c(wu) = 1, this is
impossible. Thus, there is no proper Hamiltonian z — v path in G, which
is a contradiction. Therefore, hpc(G) > 3 and so hpc(G) = 3.

We now consider some well-known Hamiltonian-connected graphs, begin-
ning with complete graphs, which are supergraphs of all Hamiltonian-
connected graphs. It is easy to see that hpc(K3) = 3. When n > 4,
hpe(K,) = 2, however, which we verify next.

Theorem 2.1. For every integer n > 4, hpe(K,,) = 2.

Proof. We consider two cases, according to whether n is even or n is odd.

Case 1. n is even. The complete graph G = K,, contains a 1-factor F.
Define an edge coloring ¢ of G by assigning the color red to each edge of F’
and the color blue to the remaining edges of G. We show that c is a proper
Hamiltonian-path 2-coloring of G that is, for every two vertices u and v
of G, there is a proper Hamiltonian v — v path in G. Let n = 2k and let
V(G) = {v1,v2,...,v95}. Suppose that E(F) = {vg;_1v9; : 1 < i < k}.
There are two possibilities, depending on whether uv is a blue edge or uv
is a red edge. Thus, we may assume that either (1) u = v; and v = vy, or
(2) u = v9 and v = v1. Cousider the properly colored Hamiltonian cycle
C = (v1,v9,...,095,v1) of G. If (1) occurs, then (u = v1,vs,...,v9 = v)
is a proper Hamiltonian v — v path in G; while if (2) occurs, then (v =
V2, V3, ..., Uk, 1 = v) is a proper Hamiltonian v — v path in G. Therefore,
hpe(K,,) = 2.

Case 2. n > 5 is odd. Let C = (v1,vs,...,0,,v1) be a Hamiltonian cycle
in G = K,,. Define a coloring c of G by assigning the color red to each edge
of C' and the color blue to the remaining edges of G. We show that c is a
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proper Hamiltonian-path 2-coloring of G; that is, for every two vertices u
and v of G, there is a proper Hamiltonian v — v path in G. We may assume
that v = v, and u = v; for some integer ¢ with 1 <7 < (n—1)/2.

First, suppose that u = v1. If n =1 (mod 4), then
(U = V1, V2, V4, U3, Us, Vg, U8, U7, V9, ...,Un-3,Un—-1,Un—-2,Un = U)
is a proper Hamiltonian w — v path in G; while if n =3 (mod 4), then
(u = v1,v2, V4,03, V5, V6, U8, U7, V9, - - - s Un—5, Un—3 Un—a, Un—1; Un—2; Un = V)
is a proper Hamiltonian u — v path in G.

Next, suppose that v = v; where 2 < j < (n —1)/2. If n = 5, then
u = vy and (vs,vs,v4,v1,02) is a proper Hamiltonian v — v path in G.
Thus, we may assume that n > 7 is odd. Let A = {v1,v2,...,v;_1} and
B = {vj41,Vj42,...,Un—1}. Let |A| = a and |B| = b. Since n > 7 is odd,
it follows that (1) b > 3 and (2) a +b=n — 2 is odd and so a and b are of
opposite parity. We consider two subcases, according to whether a is even
or a is odd.

Subcase 2.1. a is even. Then
Q= (u="0j,0j_ 2,V 1,Vj-4,U;j3,Vj_6,Vj—5, -, V1,02, Vj12)
is a proper u — vj4o path in G with V(Q) = {v1,vs,...,v;} U{vj12} and

!/
Q = (’LL = V5425 Uj+1,Vj+4, Vj43, Uj+65 Vj+5, Vj+8, Ujt-7y -« -5

Un—2,Un-3,Un—-1,Un = 'U)

is a proper vjio — v path in G with V(Q') = {vj+1,vj12,...,v,}. Thus,
V(Q) U V(Q/) = V(G), V(Q) N V(Q,) = {’Uj+1} and V2Vj42 and Vj4+1Vj42
have distinct colors (namely, vov;42 is blue and vj41v;42 is red). Therefore,
the path @ followed by Q' produces a proper Hamiltonian u — v path in G.

Subcase 2.2. @ is odd. If a =3 (mod 4), then
Q= (u= Vs Vj—1,V5-3,V5—-2,Uj—4,Vj—5,Vj—7,Uj—6;- -+ 7U1,U2»Uj+1)
is a proper u — vj41 path in G; while if a =1 (mod 4), then
Q= (U =10j,0j-1,Vj-3,Vj—2,Uj—4,Vj—5,Vj—7,Uj—6, - - - , U3, V4, V1, V2, Vj+1)

is a proper v — v;41 path in G. We now show that @) can be extended to a
proper Hamiltonian v — v path in G. If b =0 (mod 4), then

!
Q" = (Vj1,0j425 Vj145 Vj 135 Ujt 55 Vj6s Vj485 Uit Ty - - - 5

Un—3,Un—1,Un-2,Un = U)
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is a proper v;11 — v path in G; while if b = 2 (mod 4), then b > 6 (since
b > 3) and

!
Q" = (Vjg1,Vj42,Vj44, Vi3, Ujp5, V6, Vj+8s Ujq Ty - - - 5

Un—4,Un—-1,Un—-2,Unp = U)

is a proper vj4+1 — v path in G. Thus, as in Case 1, the path @ followed by
Q' produces a proper Hamiltonian u — v path in G. O

We saw that if G is a Hamiltonian-connected graph of order at least 4,
then 0(G) > 3. There are infinitely many Hamiltonian-connected cubic
graphs. For each odd integer n > 3, the prism C,, O K5 is cubic and
Hamiltonian-connected (see [8]). We saw that hpc(C3 O K3) = 3. In fact,
hpe(C,, O K3) = 3 for all odd integers n > 3.

Theorem 2.2. For each odd integer n > 3, hpc(C,, O K3) = 3.

Proof. For an odd integer n > 3, let G = C,, O Ks, which is constructed
from the two n-cycles (u1,uga, ..., un,u1) and (vi,ve,...,v,,v1) by adding
the n edges w;v; for 1 < ¢ < n. Since x'(G) = 3, it follows by (1) that
hpe(G) < 3. Tt remains to show that hpe(G) > 3. Assume, to the contrary,
that there is a proper Hamiltonian-path 2-coloring ¢ of G using the colors 1
and 2.

First, consider a proper Hamiltonian u; — u3 path P in G. Observe that
either P begins with uy,us or P ends with ug,u3. Suppose first that P
begins with uy, us. Hence, P must begin with u;, us, vy and 80 w1y, u1v; ¢
E(P). Since each vertex in V(G) — {u1,us} has degree 2 in P, it follows
that v1v,,v1v9 € E(P) and so P begins with the subpath (u1, ug, ve, v1, vy).
Since unu; ¢ E(P) and w, has degree 2 in P, it follows that w,v,, u,t,—1 €
E(P) and so P contains the subpath (u1, us, v2,v1, U, Un, up—1). Similarly,
VpUn—1 ¢ E(P) and up_10p—1,Vn—10p—2 € E(P). Continuing in this way,
we see that P is the following path

Pl = (u17 u27/U27 Ul) U’I’L,un) un717vn71’ Un727un727 AR 7“471)47/(}37 u3)' (2)

Next, suppose that P ends with us, us. This implies that ujus, usvs, usuy ¢
E(P) and so ugva,vavs,v3vy € E(P). Hence, P ends at the subpath
(v4,v3,v2,us,u3). An argument similar to the one above shows that P
is the following path

P2 = (Ul, V1, Uny Up, Un—1,Un—1,Un—2,Un—-2,...,Us, V4, U3, V2, U2, Ug).
In either case, P must contain the subpath

[
P = (Ul, Un,Un, Un—1,Un—1,Un—-2,Un—-2,--- 7’“’47’047“3)'

54



By the symmetry of the graph GG, we may assume, without loss of generality,
that P = Py, described in (2). Since c is a proper Hamiltonian-path 2-
coloring of G using the colors 1 and 2, we may assume, without loss of
generality, that c(ujus) = 1. Since P; is a proper path and c(ujus) = 1,
it follows that c(ugve) = 2 and c(vivz) = 1. For the remaining edges e of
Py, it follows that c¢(e) = 1 if e = u;v; and ¢(e) = 2 if e belongs to one
of the two n-cycles. In particular, ¢(viv,) = 2. Next, consider a proper
Hamiltonian usg — us path @ in G. An argument above shows that there
are two possibilities for ). Furthermore, () must contain the subpath

/
Q - (US; V2,U2,U1,V1,Un, Un, Un—1,Un—-1,Un—-2,Un—-2,...,Us, Vs, US)'

Since @' is proper and c(ugve) = 2, it follows that c(vsve) = 1 and so
the colors of )’ are alternately colored by 1 and 2, beginning with 1. In
particular, ¢(viv,) = 1, which contradicts the fact that c(viv,) = 2. O

3 Minimum Hamiltonian-Connected Graphs

We start this section with a useful observation.
Observation 3.1. If H is a Hamiltonian-connected spanning subgraph of
a graph G, then hpc(G) < hpc(H).

If G is a Hamiltonian-connected graph that is not complete and w and v are
nonadjacent vertices of G, then G + uv is also Hamiltonian-connected and
hpe(G+uv) < hpe(G) by Observation 3.1. This suggests that Hamiltonian-
connected graphs having the greatest proper Hamiltonian connection num-
bers are minimal Hamiltonian-connected graphs. This leads us to con-
sider Hamiltonian-connected graphs of order n and minimum size. Every
Hamiltonian-connected graph of order at least 4 is 3-connected. Therefore,
if G is a Hamiltonian-connected graph of n > 4, then 6(G) > 3, which
implies that the minimum possible size of a Hamiltonian-connected graph
of order n is |2 | The following result is due to Moon [11].

Theorem 3.2. For each integer n > 4, there exists a Hamiltonian-connected
graph of order n and size L3"—2+1J

We now determine the proper Hamiltonian connection numbers of graphs
belonging to two classes of Hamiltonian-connected graphs of order n and
size L?’"; 1J, one class for n even and the other class for n odd, beginning
with the case when n is even.

For each integer k > 2, let P, [J K5 be the grid of order 2k in which two
paths of order k are P, = (21,2,...,2x) and P, = (y1,Y2,...,Yx) such
that z;y; € E(P, O K3) for 1 < ¢ < k. Now, let Hy be the cubic graph
of order 2k + 2 obtained by adding two adjacent vertices u and v to the
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grid P, O K5 and joining (1) the vertex u to z; and y; and (2) the vertex
v to xp and yr in P, O Ky. Each graph Hjy has the property that it is
Hamiltonian-connected (see [11]) and hpc(Hy) = x'(Hg) = A(Hg) = 3.
We verify this now.

Theorem 3.3. For each integer k > 2, hpc(Hy) = 3.

Proof. Let C = (u,z1,xa,...,Tk U, Yk, Yk—-1,---, Y3, Y2,Y1,U) be a
Hamiltonian cycle of Hy. Define a proper 3-edge coloring of Hj by alter-
nately assigning the colors 1 and 3 to the edges of C' and assigning the
color 2 to the remaining edges of Hy. Thus, hpe(Hy) < x/(Hy) = 3. Fig-
ure 3(a) shows this edge coloring for the case when k is odd and Figure 3(b)
shows this edge coloring for the case when k is even.

A 3
(a)“\2 2 2 2 2 v
kisodd — 3\j__ 1 3 L1, 1k 3 1

Y1

Y2 Y3 Yk—1 Yk

(b) w

k is even 3

Y1 Y2 Y3 Yk—1 Yk

Figure 3: Edge colorings of Hj

It therefore remains to show that hpc(Hy) > 3. Assume, to the contrary,
that there is a proper Hamiltonian-path 2-coloring ¢ of Hy using the colors 1
and 2. First, consider a proper Hamiltonian v — v path. There are only
two Hamiltonian u — v paths in G. Because of the symmetry of these
paths, we consider the path (u, z1,y1,y2, T2, 3, Y3, - - -, Tk, Yk, v) if k is odd
and (u,x1,Y1,Y2, T2, T3,Y3, - - -, Yk, Tk, V) if k is even. Choosing c(uxy) = 1,
the colors of the remaining edges on the path are determined as shown
in Figure 4 when k is odd.

Next, consider a proper Hamiltonian u — zo path P in Hy. If P begins with
u, Y1, then P cannot contain x1, which is impossible. Suppose that P begins
with w,v. Then P must end as x3,ys3, Y2, Y1, 21, 22. Since c(xsyz) = 2, it
follows that ¢(y2y3) = 1, which is impossible as ¢(y1y2) = 1. Hence, P must
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Y2

Figure 4: A step in the proof of Proposition 3.3 when k is odd

begin with u,z; and so
P=(u,T1,Y1,Y2, -« - s Yk Uy T, Thi1y - - - , T2)-
Furthermore,
the edges of P are alternately colored 1 and 2. (3)

We now consider the Hamiltonian x; — xo paths in G. There are only two
Hamiltonian z1 — o paths @ and Q' in G, where

Q - ($1,U,y1,y2»~ Yk, Uy Xy Tle—15 - - - ,$2)
and

Q/: (xlﬂy17u7v7ykax/€7$k—17yk—1a'"ay27x2) if k is even
(Ilay17u7v7xkaylmyk—lazk—l; R 7y27x2) if £ is odd.

If c(uy1) = 1, then @ is not proper and so @’ must be proper. However then,
c(x;xiq1) = 1 for each integer ¢ with 1 <4 < k — 1, which contradicts (3).
Hence, the edges of the Hamiltonian 1 —xo path @ are alternately colored 1
and 2, beginning and ending with 1. Now, consider a Hamiltonian u — ys
path @. Proceeding as above with the path P, we see that ) must contain
Z1Y1, T1Z2, Tox3 as consecutive edges on Q. Since c(z1y1) = 2, it follows
that c¢(x1ze) = 1. However, c(xoxs) = 1, which is impossible. Thus, no
such proper Hamiltonian u — yo path exists. Therefore, hpc(Hy) > 3 and
so hpe(Hy,) = 3. O

For each integer k > 3, recall that P, [J K5 is the grid of order 2k in which
two paths of order k are Py, = (x1,22,...,2%) and P, = (y1,Y2,--.,Yk)
such that x;y; € E(P, O Ks) for 1 < ¢ < k. The graph F} of order
2k + 1 is constructed from P, O K5 by adding a new vertex u and joining
u to each vertex in {x1,zk,y1,yr}. Thus, Fy has 2k vertices of degree 3
and one vertex of degree 4. It is known [11] that Fj is a Hamiltonian-
connected graph of odd order and has the minimum size of a Hamiltonian-
connected graph of order 2k 4 1 for each integer £ > 3. Furthermore,
X' (Fg) = A(Fy) = 4. We show that hpc(F) = 3.
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Theorem 3.4. For each integer k > 3, hpc(Fy) = 3.

Proof. For each integer k > 3, let P, [0 K5 be the grid of order 2k in which
two paths of order k are P, = (x1, %2, ..., x;) and P, = (Y1, Y2, - - -, Yx) such
that z;y; € E(P, O Ks) for 1 <4 < k. The graph Fy of order 2k 4+ 1 is
constructed from P, O K5 by adding a new vertex u and joining u to each
vertex in {x1,xk,y1,yr}. Define an edge coloring ¢ : E(Fy) — {1,2,3}
of F}, by alternately assigning the colors 1 and 3 to the edges of P and
P/ beginning with 1 and assigning the color 2 to the remaining edges of
P, O K. Furthermore, if k¥ > 3 is odd, then let c(uz1) = c¢(uy;) = 3 and
c(uxy) = cluyg) = 1 and if & > 4 is even, then let c(uzi) = c(uy;) = 3
and c(uxy) = c(uyy) = 2. Figure 5(a) shows this edge coloring for the case
when k is odd and Figure 5(b) shows this edge coloring for the case when
k is even.

(a)

k is odd

Y1 Y2 Y3 Yk—1 Yk

(b)

k is even

Y2

Figure 5: Edge colorings of Fj

Next, we show that the 3-edge coloring of Fj described in Figure 5 is a
proper Hamiltonian-path 3-coloring of Fj; that is, we show that F}, contains
a proper Hamiltonian w — z path for each pair w, z of distinct vertices of
Fj.. First, observe that every Hamiltonian path P of F}, is proper unless P
contains both uz; and uy, or contains both uxy and uy,. Hence, if either
w or z is u, then F} contains a proper Hamiltonian w — z path with initial
vertex u. Therefore, we may assume that neither w nor z is u. We consider
the following cases.

Case 1. {w,z} = {x;,x;} or {w, 2} = {y;,y;}, wherei < j, say the former.
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If 7 is even, then consider the z; — u path
P = (zimis,. - ST 1 Y1 Y2 - s
Yis Yim1s Tie1, Tim2, Yie2y - - -, Y1, T1, U);
while if 7 is odd, then consider the x; — u path
P = (T, Tit1y oo Tt Y1 Yj—2, - - -
Yis Yim 15 Tie1, Tim2, Yim2,s -+ - T1, Y1, U)-
Next, if k — j is even, then consider the v — x; path
P = (U Yy Thoy Thm 15 Ykm 1, Y2, - -+ Y T4 )
while if £ — j is odd, then consider the u — x; path
P = (W, Thy Yb, Yk 15 The 1, T2, Yk—25 - - -5 Y Tj)-
Then, P’ followed by P” is a proper Hamiltonian z; — x; path.

Case 2. {w,z} = {z;,y;}. We may assume that ¢ < j. There are two
subcases.

Subcase 2.1. i = j. If i is even, then consider the x; — u path
P = (2, %i-1,Yi-1,Yi-2, Ti—2, Ti—3, - - - , T1, Y1, U);
while if ¢ is odd, then consider the x; — u path
P = (24,2 1,Yi—1,Yi—2, Ti—2, Ti—3, - - -, Y1, T1, U).
Next, if k — 4 is even, then consider the u — y; path
P" = (U Yy Thor Tk 15 Ykm1, Yk—2, - - 5 Tit 15 Yik 1, Yi )
while if & — 4 is odd, then consider the u — y; path
P = (U, T, Y, Yh—1, Th1, The2, - - -, Tip 1, Yit 1, Yi)-
Then, P’ followed by P” is a proper Hamiltonian x; — y; path.
Subcase 2.2. i < j. If i is even, then consider the x; — u path
P o= (T, Tit1y ey Tt Y1 Yj—2s - - -
Yis Yie1s Tim1, Tim2y Yim2s -+ -5 Y1, T1, U);
while if ¢ is odd, then consider the x; — u path
Pl = (24, @ig1, e Tjm 1, Yjm1, Yj—2s - - - s
YisYio1, i1, im0, Yim2y -+ T1, Y1, U).

If k — j is even, then consider the v — y; path
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P’ = (uaxkvykaykflvxkflaxkf%ykf%'"al'jayj)v

while if £ — j is odd, then consider the u — y; path

P’ = (ua Yks Thy Th—1,Yk—1,Yk—2,Tk—2,-- -, L5, Z/g)
Then, P’ followed by P” is a proper Hamiltonian z; — y; path.

It therefore remains to show that hpc(F)) > 3. Assume, to the contrary,
that there is a proper Hamiltonian-path 2-coloring ¢ of F}, using the colors 1
and 2. First, consider a proper Hamiltonian u — v path. We consider two
cases, according to whether k is odd or k is even.

Case 1. k > 3 is odd. Let k = 2t 4+ 1 for some positive integer t. First,
consider the vertices x;y1 and u. Let P be a proper Hamiltonian z;11 —u
path in Fj. First, observe that P cannot start with x4;1,y:+1. Thus, either
P starts with ;41,2 or starts with @41, 24y2. Suppose, without loss of
generality, that P starts with z;41,2:. Since xi112¢12, Tir1yer1 ¢ E(P)
and y¢41 and 4o have degree 2 on P, it follows that

(Yts Y1, Yt+2, T2, Try3) is a subpath of P. (4)

If t > 2, then zy; ¢ E(P) (for otherwise, y;—1 cannot belong to P).
Similarly, z;y; ¢ E(P) for 2 < i < t. Hence, P contains the subpath
(xt+17xt7 sy X1, Y1, Y2y - Yt 1 yt+2)' By (4)7 iftis Odd7 then

P = (xt+1,$t, e L1, Y1, Y25 - - Y15 Yt 42, Tt42, T35 Y435 - - -5 Yk Ty U),

while if ¢ is even, then

P= (xt+17xt, e T Y1, Y2 - Yt 1, Yt 42, T2, T3, Yt 435 - - - ,(L'k,yk,u).

Since ¢ is a proper Hamiltonian-path 2-coloring of Fj using the colors 1
and 2, we may assume that P is alternately colored 1 and 2, beginning
with 1 and ending with 2. Thus, the colors of some edges of P, O Ky
are determined. This is shown for k¥ € {5,7} in Figure 6 where each
bold edge belongs to the path P. In particular, {c(y1y2),c(xzoz3)} =

{c(@irr@), c(ziromiqs)} = {1,2}

Next, consider the vertices 1 and u. Let QQ be a proper Hamiltonian 1 —u
path in Fj. Since @ cannot begin with x1,u, exactly one of x1x5 and 1y,
is an edge of (). We consider these two subcases.

Subcase 1.1. x5 € E(Q) and z1y1 ¢ E(Q). Then

Q - (xlax27'"axkaykaykfla"'vyl»u)'

Since c(zsxiy1) = 1, it follows that e(xiy12442) = 2 and c(@iq243) = 1,
which is a contradiction.
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x1 o xs3 T4 5
(0] o ®)
2 1 2
1 1 1
2 1 2
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3! Y2 Y3 Y4 Ys
1 T2 x3 T4 5 Z6 z7
O _ o] o]
1 2 1 2
2 1 1 1
1 2 1 2 2
\— \)
Y1 Y2 Y3 Ya Ys Ye yr

Figure 6: The colors of some edges of P, O K5 in Case 1 for k € {5,7}

Subcase 1.2. x1z2 ¢ E(Q) and x1y1 € E(Q). Here,

Q = (1’1,y1,y2,$2,$3, cee 7yk727ykflvxkflaxkvylﬁu)'
Since {c(y1y2), c(zaz3)} = {1, 2}, there is no color for yoxo and so Q is not
proper.

Case 2. k > 4 is even. Let k = 2t for some integer ¢ > 2. First, consider
the vertices z; and u. Let P be a proper Hamiltonian x; — u path in F}.
As in Case 1, the path P cannot start with xy,y;. Thus, either P starts
with x4, x4_1 or x4, x441. We consider these two subcases.

Subcase 2.1. P starts with x¢,x+—1. Since y; and x;y1 have degree 2 in P,
it follows that

(Yt—1,Yt, Yt+1, Te41, Tey2) is a subpath of P. (5)

If t > 3, then z;_q1y:—1 ¢ E(P) (for otherwise, y;_o cannot belong to P).
Hence, P begins with the subpath (x4, x¢—1,...,21,y1,¥Y2,---,Yt). Because
of (5), if t > 3 is odd, then

P = (24, Z4-1, s T1,Y1, Y2, -+ Yts Yt 1s Tt 1, Teg 25 - - 5 Y15 Yks Thy U);

while if ¢t > 2 is even, then

P= ($t7$t—1, e T Y1, Y25 - -5 Yt Y1, T 1, Lt4-25 - - - ,fﬂk—hxk,ymu)-

Since ¢ is a proper Hamiltonian-path 2-coloring of Fj using the colors 1
and 2, we may assume that P is alternately colored 1 and 2, beginning
with 1 which is shown in Figure 7. In particular, ¢(z;—12¢) = 1 and
c(x4412442) = 2 whether ¢ is odd or even.
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Tl T2 xs3 T4 5 6
(@)
2 1 2 't
1 1 | 1 1
2 1 2 2
C o]
Y1 Y2 Y3 Y4 Ys Yo
xr1 T2 x3 T4 x5 6 x7 xg
o o} o o
1 2 1 2 2
2 1 1 1 1
1 2 1 2 2
(@)
Y1 Y2 Y3 Y4 Ys Y6 yr Y8

Figure 7: The colors of some edges of P, O K5 in Subcase 2.1 for k € {6,8}

Next, consider the vertices 1 and u. Let QQ be a proper Hamiltonian 1 —u
path in Fj. Since @) cannot begin with x1,u, exactly one of x1x5 and 1y,
is an edge of Q.

* First, suppose that x1x5 is an edge of @) and x1y; is not an edge of Q.
Since each of x5 and y; has degree 2 in @, it follows that @ starts with
(z1,%2,23) and ends at (y2,y1,u). This forces that @ is the following
path

Q= (1,2, ..., ks Yk, Yk—15 - - - Y2, Y1, U).

Since ¢(zi—12¢) = 1 and c(zy12442) = 2, regardless of the color of
ZTixey1, it follows that @ is not proper.

* Next, suppose that z1y; is an edge of () and x5 is not an edge of Q.
Since each of x5 and y; has degree 2 in @, it follows that () must start
with (21, y1, Y2, 2, x3). This forces that @ is the following path

Q= (T1,Y1,Y2, T2, T3, Y3, Yy - - -, Th—2, Tho—1, Yh—1, Yhs Tk, U).

Since {c(y1y2), c(xaz3)} = {1, 2} (see Figure 7), regardless of the color
of xo1s9, it follows that () is not proper.

Subcase 2.2. P starts with x4, x¢11. Since xpxy—1,zryr ¢ E(P), it follows
that (z:—2,%t—1,Yt—1,Yt, Y¢+1) is a subpath of P. Thus, if ¢ > 3 is odd,
then

P = (Itvxt-i-lv s Ty Yk Yk—1y - 5 Yt Yt—1, Tt —1, Tt —2, - - - 7x27171,y17U)

and if ¢ > 2 is even, then

P = (xta-rt+17 s Ty Yy Yk—1y -5 Yty Yt—1, Tt —1, Tt —2,5 - - - >y2a91,$17U)-
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Since ¢ is a proper Hamiltonian-path 2-coloring of Fj using the colors 1
and 2, we may assume that P is alternately colored 1 and 2, beginning
with 1 which is shown in Figure 8.

1 x2 3 x4 x5 x6
O O ° O o)
2 1 2 ? 1
1 1 2
2 1 2 1
@) O o]
Y1 Y2 Y3 Ya Ys Ye
1 o 3 T4 x5 Ze 7 g
oO————o0 o O 0] > o
2 1 2 1 2
1 1 1 1
2 2 1 2 1 2
O 0]
Y1 Y2 Y3 Y4 Y5 Y6 y7 Y8

Figure 8: The colors of some edges of P, [0 K5 in Subcase 2.2

Next, consider the vertices 1 and u. Let QQ be a proper Hamiltonian 1 —u
path in F}. Since @ cannot begin with x1,u, exactly one of x1x5 and 1y,
is an edge of Q.

* First, suppose that xixo is an edge of @ and xyy; is not an edge
of Q. Since y; has degree 2 in @Q, it follows that @) ends at (y2,y1,u).
Furthermore, zoys ¢ E(Q) and so xsx3,y2y3 € E(Q). This forces
that @ is the following path

Q = (l'l,xQ,~»~,xk,yk,yk_l,-~-,y2,y1,u)~

Since {c(zxiy1), c(xi—2xi—1)} = {1,2}, there is no color for z;_qz;
and so @ is not proper.

* Next, suppose that z1y; is an edge of @ and x5 is not an edge of Q.
Since each of 25 and y; has degree 2 in @ and y1u ¢ E(Q), it follows
that

Q = (x17y17y25$27m37y31 e Yt—1,Yt, Tty Te4-1y - - - 7yk7$k7u)'

Since {c(ys—1yt), c(xsxi+1)} = {1, 2}, there there is no color for ¢(z1y:)
and so () is not proper. O

It has been shown in [3] that if G is a 2-connected graph, then the proper
connection number of G is at most 3. Since every Hamiltonian-connected
graph G of order at least 4 is 2-connected (in fact, 3-connected), pc(G) < 3.
We have seen no Hamiltonian-connected graph G where hpc(G) > 3, which
leads to the following cojecture.

Conjecture 3.5. If G is a Hamiltonian-connected graph, then hpc(G) < 3.
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