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Coloring graphs to produce walks without

forbidden repeats

Wayne Goddard∗ and Deirdre LaVey

Abstract. We consider the problem of coloring the edges of a graph such
that every pair of vertices are joined by an ℓ-rainbow walk, that is, a walk
where for every sub-walk of length at most ℓ+ 1 its edges receive different
colors. We show that the minimum number of colors needed is at most
2ℓ+1 if the graph has a cycle of length at least ℓ. We also provide a sharp
bound for ℓ = 2 in bridgeless graphs, and general bounds for sufficiently
large bridgeless graphs, and show that if the graph contains two sufficiently
long edge-disjoint closed trails then the number of colors needed is at most
ℓ+ 2.

1 Introduction

There is a growing literature on coloring the edges of a graph so that there
exist “connectedness substructures” without some forbidden pattern of col-
ors. One version of the problem was introduced by Borozan et al. [2], who
defined a coloring where every pair of vertices are joined by a path such that
no two consecutive edges on the path have the same color. The associated
parameter is called the path connection number. We considered the same
coloring problem for walks [14] and for trails [9].

In this paper we consider a related coloring condition. Specifically, we
define a walk to be ℓ-rainbow if for every sub-walk of length at most ℓ+ 1,
its edges receive different colors. That is, a color can only be re-used every
ℓ+1st edge. We will denote the condition by Rℓ. Thus the original problem
was about R1. We define the Rℓ-walk connection number as the minimum
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number of colors in a coloring of the edges of graph G such that every pair
of vertices are joined by an Rℓ-walk, and denote the parameter by wℓ(G).

This concept for paths was introduced by Li et al. [13] and Chartrand et
al. [3, 6] (though the latter define it slightly differently). For example, Li et
al. [13] showed that if a graph is 2-connected, then there is a coloring of the
edges with at most 5 colors such that every pair of vertices are joined by an
R2-path. They also provided some calculations, including determining the
value of the associated parameter for a complete bipartite graph, which is
also given in [3]. The concept was renamed (1, ℓ)-rainbow connectivity in
the survey [11] and book [12], where they denote the associated parameter
by rc1,ℓ(G). Further, related questions about rainbow-colored paths and
cycles were investigated by Chartrand et al. [4, 5]. Related work is con-
sidered in [13, 8, 15]. Note that there is also work on rainbow Hamilton
cycles, but these are questions about all colorings rather than the existence
of a coloring. And there is also work on graphs where the edges are already
colored.

Our focus is on walks and in particular upper bounds on the parameter.
The original paper contained the bounds for the proper-walk connection
number (the 1-walk connection number in the terminology of this paper):

Theorem 1.1. [14]

(a) If graph G is connected and not a tree, then w1(G) ≤ 3.

(b) If graph G is 2-edge-connected, then w1(G) ≤ 2.
And these results are sharp.

An important paper on the walks case is the recent work by Bang-Jensen et
al. [1], who gave an algorithmic characterization to determine which graphs
have R1-walk connection number 3.

We proceed as follows. In Section 2 we show that the Rℓ-walk connection
number is at most 2ℓ + 1 if the graph has a closed trail of length at least
ℓ, and discuss the sharpness of this result and its extension. For bridgeless
graphs, we show in Section 3 that the R2-walk connection number is at most
4 and this is sharp, and in Section 4 that in general the Rℓ-walk connection
number is at most (3ℓ+ 5)/2 if the graph is sufficiently large. In Section 5
we consider graphs with two disjoint long closed trails and show that for
such graphs, the Rℓ-walk number at most ℓ + 2. Finally in Section 6 we
briefly consider some related problems.
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Figure 1: A graph with arbitrarily large w6

2 Walks and closed trails

It is immediate that in a tree one cannot reverse a colored walk. Thus
the Rℓ-walk and Rℓ-path connection numbers both equal the version of the
edge-chromatic number where edges within distance ℓ must have different
colors. For R2, Li et al. [13] and Chartrand et al. [3] noted that this value
equals one less than the maximum sum of degrees of adjacent vertices. The
observation about trees carries over to graphs where every cycle is small.
For example, define a pineapple by taking a cycle Cm and adding many
leafs at one vertex, as shown in Figure 1. If m < ℓ, then the walk from
one end-vertex to another is short enough that both (and hence all) the
leaf-edges must have different colors.

On the other hand, if there is a sufficiently long cycle, then the Rℓ-walk
connection number is bounded, as we now show. We will need bounds
on the (vertex) chromatic number of the powers of cycles (a subset of the
so-called Harary graphs). The exact values were given by Kazemi and
Jalilolghadr [10]. Let Cℓ

n denote the graph obtained from the cycle Cn by
joining all pairs of vertices at distance at most ℓ.

Theorem 2.1. [10] For 1 ≤ ℓ ≤ n/2, the chromatic number of Cℓ
n is

χ(Cℓ
n) =

⌈
n

⌊n/(ℓ+ 1)⌋

⌉

From this one can deduce the following:
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Lemma 2.2. Let 2 ≤ ℓ ≤ n/2.

(a) χ(Cℓ
n) ≤ 2ℓ+ 1.

(b) χ(Cℓ
n) = 2ℓ+ 1 exactly when n = 2ℓ+ 1.

(c) χ(Cℓ
n) = 2ℓ exactly when (i) ℓ = 2 and n is not a multiple of 3; (ii)

ℓ = 3 and n ∈ {6, 11}; and (iii) ℓ ≥ 4 and n = 2ℓ.

(d) For fixed ℓ, χ(Cℓ
n) ≤ ℓ+ 2 for all n sufficiently large.

Proof. One can readily prove these claims from scratch. But they also
follow from Theorem 2.1. Say that n = q(ℓ+1)+ r where 0 ≤ r ≤ ℓ. Then
we have that

χ(Cℓ
n) = ℓ+ 1 +

⌈
r

q

⌉
.

Part (a) follows since r ≤ ℓ. Part (b) follows since the only way that ⌈r/q⌉
can equal ℓ is that r = ℓ and q = 1. Part (d) is immediate as q ≥ ℓ suffices.

For part (c) assume ℓ = 2. Then ⌈r/q⌉ = 1 when r ̸= 0 (except for the case
covered by (b)). Assume ℓ = 3. Then r/q > 1 when q = 1 and r = 2 and
when q = 2 and r = 3. For ℓ ≥ 4, the only way that r/q > ℓ − 2 is that
q = 1.

The above result suggests considering cycles in the graph. But it is sufficient
to consider closed trails: that is, closed walks all of whose edges are distinct.

Theorem 2.3. If a connected graph G contains a closed trail of length m
where m ≥ ℓ, then wℓ(G) ≤ ℓ+ ⌊χ(Cℓ

m)/2⌋+ 1.

Proof. Let T be a closed trail of length m. Let F be a forest connecting
T to the vertices not in T . We will color the edges of T and F such that
between any two vertices u and v of G, the desired Rℓ-walk can be obtained
as follows. Let tu be the vertex of T closest to u and tv be the vertex of
T closest to v, where possibly tu = u, tv = v, and/or tu = tv. The walk
proceeds in F from u to tu, traverses T completely back to tu, then walks
along T to tv, and then proceeds in F to v.

First, we color the closed trail T such that every pair of edges up to distance
ℓ apart (as measured in their appearance in T with wrap around) receive
different colors. The number of colors needed equals the (ordinary vertex)
chromatic number of the ℓth power of Cm. If ℓ > m/2 then χ(Cℓ

m) = m <

Coloring graphs to produce walks without forbidden repeats

96



e1e0

1

2

3

4

5

Figure 2: Coloring edges near the trail

2ℓ. Otherwise, by Lemma 2.2, χ(Cℓ
m) ≤ 2ℓ + 1. In particular this implies

that ⌈χ(Cℓ
m)/2⌉ ≤ ℓ + 1, and since ⌈x/2⌉ + ⌊x/2⌋ = x for all integers x,

rearranged this implies that χ(Cℓ
m) ≤ ℓ + ⌊χ(Cℓ

m)/2⌋ + 1. In other words,
we have enough colors to color the trail T .

We color the edges e of F in order based on their distance d from T (where
an edge incident with T has distance 0). There are three cases. If d ≤
ℓ − ⌈χ(Cℓ

m)/2⌉, then we give all edges at distance d the same color, in
particular a new color not already used. See Figure 2 for an example for
the case ℓ = 3 and d = 0: edge e0 receives the 6th color. The number of new
colors needed is at most ℓ−⌈χ(Cℓ

m)/2⌉+1. We have enough colors, since the
total number of colors used is χ(Cℓ

m)+ℓ−⌈χ(Cℓ
m)/2⌉+1 = ℓ+⌊χ(Cℓ

m)/2⌋+1.

If ℓ ≥ d > ℓ − ⌈χ(Cℓ
m)/2⌉, then for edge e, let the set Fe consist of the d

edges joining e to T together with the ℓ− d edges in both directions on T .
Note that |Fe| = 2ℓ − d. It suffices to color e so that it does not share a
color with any edge in Fe. See Figure 2 for an example for the case ℓ = 3
and d = 1: edge e1 can have color 3. Thus we can color edge e greedily
provided ℓ + ⌊χ(Cℓ

m)/2⌋ + 1 > 2ℓ − d. Rearranged, it is sufficient that
d > ℓ− ⌈χ(Cℓ

m)/2⌉.

Finally, if d > ℓ, then we let Fe be the first ℓ edges on the path joining e
to T , and give e any color not in Fe.

As a consequence of Lemma 2.2(a) and Theorem 2.3, we obtain the main
result:

Theorem 2.4. If a connected graph G contains a closed trail of length at
least ℓ, then wℓ(G) ≤ 2ℓ+ 1.
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The above theorem is best possible, as we now show. Define a whiskered
cycle as the graph obtained from a cycle by attaching at least one end-
vertex to every vertex of the cycle. We call the leaf-edges the whiskers.

Lemma 2.5. Let G be a whiskered m-cycle with sufficiently many whiskers
at each vertex.

(a) If m is not a multiple of 3, then w2(G) = 5.

(b) If m ∈ {6, 7, 11}, then w3(G) = 7.

(c) For ℓ ≥ 4, if m ∈ {2ℓ, 2ℓ+ 1}, then wℓ(G) = 2ℓ+ 1.

Proof. Consider a valid coloring. The stated values are upper bounds by the
above theorem; so it suffices to show that these many colors are required.
Let C denote the cycle. If there are enough whiskers at some vertex v of C,
then there must be two whiskers at v with the same color. To get between
these two end-vertices, one must go around the cycle. Since this condition
holds for each choice of vertex v, if follows that the cycle C must be colored
such that any two edges at distance at most ℓ have different colors.

(a) We have ℓ = 2. By Lemma 2.2 we know that there are (at least)
four colors on C. Consider some vertex v of the cycle, and let e1, e2, e3, e4
denote the four consecutive edges in some orientation of C such that v is
incident to e2 and e3. Suppose there is a repeated color in the collection
e1, e2, e3, e4. Then it must be that e1 and e4 have the same color. But
this pattern cannot hold all the way around the cycle C, since it would
require every 3rd edge to have the same color, and m is not a multiple of
3. It follows that there must be a choice of vertex v where e1, e2, e3, e4 all
get different colors. Hence the whiskers incident to v have four forbidden
colors; and therefore need a fifth color.

(b,c) We have ℓ ≥ 3. If m = 2ℓ + 1 then we are done, as one needs 2ℓ + 1
colors for the cycle. If m = 2ℓ, then it follows that the every whisker needs
a color not used on C. Since all the edges of C receive different colors, this
means that one needs 2ℓ + 1 colors. Finally, consider the case that ℓ = 3
and m = 11. In the coloring of the edges of the cycle C, it can be checked
by hand or by computer that for all valid 6-colorings of C there must exist
six consecutive edges that receive different colors. Thus one needs a seventh
color for the whiskers incident with the middle vertex of that sextet.

One can obtain a slightly stronger conclusion for graphs without end-
vertices. We define an Eulerian tour of graph G as a closed walk that
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uses every edge of G at least once. If the edges are colored, then an Rℓ-tour
means an Eulerian tour such that every at most ℓ+1 consecutive edges have
different colors, including wrap around. (That is, the walk can be contin-
ued around the tour again and remain ℓ-rainbow.) Having an Rℓ-tour is a
stronger condition than having the desired walks.

Theorem 2.6. Let G be a connected graph with minimum degree at least
2 that contains a closed trail of length at least ℓ. Then there is an (2ℓ+1)-
edge-coloring of G such that there is an Rℓ-tour of G.

Proof. Let T be the closed trail of length at least ℓ. Define G′ as in the
proof of Theorem 2.3 to be a spanning subgraph with the edges of T and a
forest connecting every other vertex to the trail. Color G′ as in that proof.
Choose an orientation of T .

Consider some edge e in G but not G′. There are three cases: (i) Assume
e = xy where both x and y are on T . Then let Fe consist of the ℓ consecutive
edges of T immediately after (some occurrence of) y together with the ℓ
consecutive edges of T immediately before (some occurrence of) x. (These
may overlap.) Give e any color not used on Fe.

(ii) Assume e = xv where x is on T but v is not. Then let Fe consist of the
ℓ consecutive edges starting in the forest at v and going onto T , together
with the ℓ consecutive edges of T immediately before (some occurrence of)
x. Give e any color not used on Fe.

(iii) Assume e = uv where neither u nor v is on T . Then let Fe consist
of the ℓ consecutive edges starting in the forest at v and going onto T ,
together with the ℓ consecutive edges starting in the forest at u and going
to T but reverse along T . Give e any color not used on Fe.

We claim this coloring yields the desired Rℓ-tour. Our strategy is to start
on the closed trail and walk around it and pick up every edge in turn. To
pick up an edge of type (i), one can just traverse it and keep walking around
T . To pick up an edge of type (ii), exit T at (the chosen occurrence of) x,
traverse the edge, and then walk back down to T and continue circulating.
To pick up an edge of type (iii), exit T along the forest-path up to u, then
traverse the edge uv and then walk back down to T .

Finally, we note that the above process ensures that each forest edge f (that
is, an edge of G′ not in T ) is traversed. To see this, let u be an end-vertex
of G′ such that the path in G′ from u to T contains edge f . Then, since
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the graph G has minimum degree at least 2, the vertex u has an edge of
type (ii) or (iii), and f is traversed when that edge is picked up.

Of course the condition on the minimum degree is necessary for an Rℓ-tour.
Further, cycles of length at most ℓ do not suffice. To see this, consider for
example the barbell consisting of two disjoint such cycles and a path joining
them.

3 The R2-walk connection number in
bridgeless graphs

Theorem 2.4 shows that the R2-walk connection number of a cyclic con-
nected graph is at most 5. We show here that if the graph is bridgeless
then the maximum is actually 4.

We need a new idea. Consider a subgraph Q. We say that an Eulerian
tour WQ of Q is an ℓ-reversible tour if for every vertex v in Q there exists a
sub-trail Sv of length ℓ starting at v such that WQ also includes the reverse
of Sv. Note that an Rℓ-coloring of WQ requires at least ℓ + 1 colors, such
WQ must have at least this many edges.

The first result provides the fundamental connection between reversible
tours and walk colorings that “improves” on Theorem 2.3

Theorem 3.1. Let G be a connected graph. Assume G has a subgraph
Q with an ℓ-reversible tour WQ with an Rℓ-coloring using k colors. Then
wℓ(G) ≤ k.

Proof. Consider the coloring of Q. We noted above that k ≥ ℓ+ 1. Let F
be a forest such that every vertex not on Q is joined to Q by a path in F .
For each vertex v of Q, let Sv be the sub-trail of WQ of length ℓ starting
at v. We color the edges of F in order of their distance from Q. For each
such edge e, let ve be the closest vertex of Q. Then consider a walk from e
to Q and then along Sve . Define Fe as the first ℓ edges of this walk. Give
e any color that does not appear in Fe.

We claim that this coloring provides the desired Rℓ-walks. Suppose that one
wants to walk from vertex x to vertex y. Let vx and vy denote the closest
vertices of Q. Start at x and walk to Q (if necessary) using the edges of
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F ; then proceed along Svx and continue along WQ until it traverses Svy in
reverse; and then (if necessary) walk to y using the edges of F .

One natural idea for a suitable subgraph Q is a barbell : two edge-disjoint
cycles joined by a (possibly trivial) path. Indeed, two edge-disjoint closed
trails are just as good. This approach for R1 was used in the original paper,
where it was noted that one needs cycles of suitable parity:

Lemma 3.2. [14] If a connected graph G has two edge-disjoint odd cycles,
then G has a barbell Q that can be 2-colored to provide a 1-reversible tour.

We consider now the idea for R2. We will need the following well-known
fact (given for example as Fact 6 of section 4.8.1 of [16]):

Lemma 3.3. If x and y are positive integers with gcd 1, then every positive
integer at least (x − 1)(y − 1) can be expressed as a nonnegative integer
combination of x and y.

Lemma 3.4. Let G be a connected graph that contains two edge-disjoint
closed trails each of length at least 4. Then G contains a subgraph Q that
has an 2-reversible tour with an R2-coloring using 4 colors.

Proof. Let Q be the subgraph obtained by taking the two edge-disjoint
closed trails, say C1 and C2, and some path P from v1 to v2 that joins
them (possibly v1 = v2).

We will color each closed trail Ci such that the two edges incident with
vi receive the same color and there is a R2-walk from vi to vi around Ci.
Say Ci has m edges. Then one way to proceed is to use some combination
of the patterns a, b, c and a, b, c, d to color the first m − 1 edges and then
use a for the last edge. By Lemma 3.3 this approach works except when
m− 1 = 5. But then the coloring a, b, c, d, b, a works.

First color P arbitrarily so that one has an R2-walk from one end to the
other. We need to synchronize the colorings of the Ci with P . For each
i, define gi as the color that the two edges incident with vi will receive.
We first determine the colors g1 and g2. If P has at least two edges, then
choose g1 to be different from the colors of the first two edges of P and g2
to be different from the colors of the last two edges of P . If P has only
one edge, then choose g1 and g2 to be different from each other and from
the color on P . And if P has no edge, then simply choose g1 and g2 to be
different.
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Figure 3: A coloring with a 2-reversible tour

Second, let pi be the color of the edge of P incident with vi if P has an
edge; and let pi be g3−i otherwise. Then for each i, choose the color(s) of
the second and penultimate edge of Ci to be different from pi. See Figure 3
for an example of such a coloring.

This gives one the desired coloring. For a 2-reversible tour of Q with R2-
coloring, start by walking along P , go around C2 in one direction, go back
along P , go around C1 in one direction, then again along P but then traverse
C1 and C2 in the other direction.

What do graphs look like that don’t have two edge-disjoint cycles? For
example, Erdős and Pósa [7] noted that the number of edges is at most 3
more than the order. This suggests the following fact is probably known:

Lemma 3.5. Let G be a 2-connected graph that does not contain two edge-
disjoint cycles. Then G has a spanning subgraph that is either a Hamilton
path or a subdivision of K4 or K3,3.

Proof. Consider a cycle H1. If this contains all vertices of G, we are done.
So assume there is a vertex not on H1. This vertex has two internally-
disjoint paths to H1, and so one obtains a subgraph H2 of G that is a
subdivision of K4 − e.

If H2 contains all vertices of G, then it contains a Hamilton path and we
are done. So assume there is a vertex not on H2. Then the vertex has two
internally disjoint paths to the subgraph H2. If these paths use either of
the degree-3 vertices of H2, then it is readily checked that there are two
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edge-disjoint cycles. So these paths do not use these vertices, and one has
a subgraph H3 of G that is a subdivision of K4.

If H3 is all of G then we are done. So assume there is some vertex outside
H3. Then this vertex has two internally disjoint paths to H3. This yields
two edge-disjoint cycles except in the case that these paths meet H3 at
degree-2 vertices that are on paths that don’t share an endpoint. This
yields a subdivision of K3,3.

It can then be checked that the existence of a vertex outside theK3,3 creates
a second cycle.

As a consequence we obtain the following result:

Theorem 3.6. If a graph G is 2-edge-connected, then w2(G) ≤ 4.

Proof. If the graph has a Hamilton path, then three colors are needed to
color the path to provide the desired walks. If the graph has a triangle,
then the upper bound follows from Theorem 2.3. If the graph has two
edge-disjoint cycles, then the upper bound follows from Theorem 3.1 and
Lemma 3.4. So assume the graph has none of this. In particular, this means
that there is no cut-vertex. By the above lemma, the graph is a subdivision
of K4 or K3,3.

Consider first the case that G is a subdivision of K4. Let C be a cycle that
contains all four vertices of degree 3, say v1, v2, v3, v4. Suppose that C is
a 5-cycle, say with v1, v2, v3, v4 as subpath. Then by the lack of triangles,
both the path from v1 to v3 outside C and the path from v2 to v4 outside
C must contain at least one internal vertex. Thus it is possible to choose
C to not be a 5-cycle.

Then let P1 be the path from v3 to v1 without the first vertex, and let
P2 be the path from v4 to v2 without the first vertex (so that a spanning
subgraph consisting of C with P1 and P2 dangling off it). Color the cycle
C with four colors so that one can circulate around it. (This is possible
by Lemma 2.2.) For each path Pi, color it such that one can walk along it
and join C and go around C the long way round to the other path (that is,
using v3 and v4). This allows one to go down P1 and up P2. Thus this is a
valid R2-coloring.

Consider second the case that G is a subdivision of K3,3. Let C be a cycle
that contains all six vertices of degree 3, say meeting them in the order
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v1, . . . , v6. Then for i = 1, 2, 3 let Pi be the path from v3+i to vi without
the first vertex. If the set {v1, . . . , v6} is not independent, then one can
choose C such that P3 has no edge. Then one can proceed as in the case
that G is a subdivision of K4. So assume that none of the vi are adjacent.
It follows that C has length at least 12. Color the cycle C with four colors
so that one can circulate around it. (Possible by Lemma 2.2.)

Let e1, e2, e3, e4 be the two edges before and after v2 on C (that is, v2 is
incident to e2 and e3). We claim that one can choose the coloring of C such
that e1 and e4 have the same color; for if every choice of e1 and e4 have
different colors, then the coloring of C must look like 1, 2, 3, 4, 1, 2, 3, 4, . . .
Since C is long enough we can choose a coloring that does not have the
property that every fifth edge has the same color. (For example, for the
case of length 12 one can use four copies of the pattern 1, 2, 3.)

Color P2 as follows. Give the edge of P2 incident to v2 the color not present
on any of the edges ei, give the next edge of P2 the color of e1 and e4, and
then proceed along P2. This ensures that one can walk down P2 and join
C and go either way around C. For paths P1 and P3, color them so that
one can walk along down P1 go around C in some direction and then go up
P3. This also provides the walk from P1 or P3 to P2.

3.1 Rosary graphs

The value 4 in Theorem 3.6 is best possible, as we now show. Define a
rosary graph as follows. Take three cycles C1, C2, C3 each of length 2a. For
each cycle, choose one pair of antipodal vertices di, d

′
i (i = 1, 2, 3). Then

join d′i to di+1 (arithmetic modulo 3) with a path Pi that has at least
one internal vertex. Let b denote the total number of vertices added. An
example with a = 5 and b = 4 is shown in Figure 4.

Lemma 3.7. If a ≥ 5, and neither a nor b is a multiple of 3, then the
rosary graph has w2 ≥ 4.

Proof. Suppose there is a valid 3-coloring of the edges. The condition on a
and b means that none of the cycles in the graph has length a multiple of 3.
Note that every R2-walk must be periodic, that is, colored 1, 2, 3, 1, 2, 3,. . .

Since a ≥ 5, there exists a pair of antipodes c1, c
′
1 of C1 that are not adjacent

to d1, d
′
1. Let x be the penultimate vertex on P3, and y the second vertex

on P1. We claim that for some choice of α ∈ {c1, c′1} and β ∈ {x, y}, there
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Figure 4: A block with w2 = 4

is an R2-walk between α and β going the long way round, meaning using
each of P1 through P3. This is immediate if the R2-walk between c1 and c′1
goes the long way round, as it then must use both x and y.

So assume without loss of generality that the R2-walk from c1 to c′1 stays
within the first cycle C1 and uses d1. Consider the two edges before and
after d1 on the walk. Since the edge d1x shares a color with one of these
edges, in the graph the R2-walk from one of c1, c

′
1, say c1, cannot get onto

P3 there. Assume the R2-walk from c1 to x uses only the first cycle. Then
the walk c1 to d′1 to c′1 to d1 to c1 is R2-colored and hence must be periodic.
But since a is not a multiple of 3 and a ≥ 5, there is a choice of antipodes
and so one can choose vertex c1 that does not have this property. It follows
that we may assume the R2-walk from c1 to x goes the long way around.

That is, there is a R2-walk from C1 to C1 using all the Pi and half of each
of the other cycles. The same argument holds for each cycle C2 and C3 in
turn. These colorings overlap and so give a proper R2-coloring of a long
cycle. But this presents a contradiction, since the long cycle has length
b+ 3a, which is not a multiple of 3.
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4 General bridgeless graphs

The approach of Section 2 can provide an upper bound for graphs with
long closed trails.

We show next that 2-edge-connected graphs whose longest closed trail is
bounded have bounded order. It is probable that this fact has been noted
before, and maybe with a realistic upper bound.

Lemma 4.1. For all t, there are finitely many 2-edge-connected graphs
whose maximum closed trail length is at most t.

Proof. The proof is by induction on t. The base case is immediate; for
example for t = 3 the only graph is K3. So consider a longest closed trail
T in graph G.

We claim that the longest closed trail in G − E[T ] has length less than t.
Consider a longest closed trail T ′ that is edge-disjoint from T ; say of length
t′. By the maximality of T , the trails T and T ′ have no vertex in common.
By the connectivity of G, there are two edge-disjoint paths from T ′ to T .
These two paths can be combined with at least half of each of T and T ′

to get a closed trail in G of length at least t/2 + t′/2 + 2. It follows that
t′ ≤ t− 4, which proves the claim.

Now, for each vertex v outside T , there exist two edge-disjoint paths to
T ; choose one such pair and call this the v-splay. The v-splay must end
in different vertices of T , else we have a contradiction of the maximality
of T . Further, these ends cannot be consecutive on T , else we again get a
contradiction. For each pair P of vertices of V (T ) that are not joined by
an edge of T , define the auxiliary subgraph HP that consists of all v-splays
with that pair of terminals, and adding the edge eP joining P (if necessary).

Assume the graph HP is not K2. Then the removal of a single edge cannot
disconnect HP , because the two vertices of P are still joined (either by their
edge or by a splay), and every other vertex can get to at least one vertex
in P . That is, HP is 2-edge-connected. Consider a closed trail Q in HP . If
Q does not use eP , then Q is in G−E[T ] and so has length less than t by
the above claim. If Q does use eP , then let Q′ be the closed trail in G that
is formed by replacing the edge eP by a segment of T . It follows that the
length of Q′ is more than the length of Q, while Q′ has at most t edges.
Hence the longest closed trail in HP has length at most t− 1.
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By the induction hypothesis, it thus follows that the graph HP has bounded
order. Every vertex of G is in at least one of the auxiliary graphs HP .
Since there are (t−1)(t−2)/2 choices for P , it follows that G has bounded
order.

And so we get the following result:

Theorem 4.2. If a graph G is 2-edge-connected and sufficiently large, then
wℓ(G) ≤ ℓ+ 2 + ⌈ℓ/2⌉.

Proof. By Lemma 2.2, there is a t0 such that χ(Cℓ
t ) ≤ ℓ+ 2 for all t ≥ t0.

By Lemma 4.1, if G is sufficiently large it contains a closed trail of length
at least t0. By Theorem 2.3 the bound follows.

We do not know if this is even close to best possible, neither the value, nor
whether the requirement that G be sufficiently large is necessary. It does
seems likely that there is a suitable version Rℓ of a rosary graph where
wℓ(Rℓ) ≥ (1 + ϵ)ℓ, but we are unable to prove this.

5 Two disjoint closed trails

We saw above that having a long closed trail improves the upper bound on
the Rℓ-walk number from 2ℓ+ 1 to 3ℓ/2 + 5/2. We show next that having
two long edge-disjoint closed trails improves the upper bound to ℓ+2. We
will need the following lemma.

Lemma 5.1. Fix some ℓ. If n is sufficiently large, then the path on n edges
has an Rℓ-walk coloring using ℓ + 2 colors such that the first ℓ − 1 edges
and the last ℓ− 1 edges have the same colors but reversed.

Proof. Let F0 denote the pattern of colors 1, 2, . . . , ℓ− 1. Let X denote the
other three colors (that is, ℓ, ℓ+1, ℓ+2). We start with a color scheme of the
form F0, X, F1, X, F2, X . . . , where each Fi is a permutation of the colors
from 1 up to ℓ − 1. The key is that, for each pair of consecutive Fi’s, the
colors are rearranged slightly, with each color moving at most one position.
So, for example, by doing what computer science calls a bubble sort, after
sufficiently many steps, the ordering is reversed. For instance, if ℓ = 4 the
coloring might start

1 2 3 x x x 1 3 2 x x x 3 1 2 x x x 3 2 1
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Once the F0 has been reversed to FR
0 , then if sufficiently long one can by

Lemma 3.3 write the remaining number of edges as an integer combination
of ℓ+ 1 and ℓ+ 2. Then the remaining edges of the path are colored with
some combination of the patternsXFR

0 orX ′FR
0 whereX ′ is ℓ, ℓ+1 say.

Theorem 5.2. If connected graph G has two sufficiently long edge-disjoint
closed trails, then it has a subgraph Q that has an ℓ-reversible tour with an
Rℓ-coloring using ℓ+ 2 colors.

Proof. Say the two edge-disjoint closed trails are C1 and C2. Let P be a
path with ends v1 to v2 that joins C1 and C2 (possibly v1 = v2). Let Q
be the subgraph with the edges of P , C1, and C2 and the incident vertices.
The goal is to color Q such that it is possible to start on P and walk along,
go around the closed trail C1 in either direction, go back along P , around
the closed trail C2 in either direction, and so on. By the above lemma, one
can give the cycles a suitable coloring. Further, one can choose the coloring
of the cycles and the path such that the ℓ − 1 edges of C1 ending at v1,
followed by P , followed by the ℓ − 1 edges of C2 starting at v2, form an
ℓ-rainbow walk.

It seems possible that every sufficiently large 3-connected graph has two ar-
bitrarily long disjoint closed trails. This would imply that every sufficiently
large 3-connected graph has Rℓ-walk number at most ℓ+ 2.

6 Other comments

We have so far looked at the question of strengthening the R1 condition.
In another direction, one could for example consider the problem where the
color cannot be the same for three consecutive steps. But here two colors is
enough for path connection: simply take a spanning tree, designate a root,
and color the edges of the tree based on the parity of their distance from
the root.

For future work, one could consider stronger restrictions, such as that every
two vertices are in a cycle, or there aremultiple “disjoint”walks/trails/paths
between them, as for example investigated in [8, 13]. One can also consider
an upper bound on the length of the walk, as was done for paths in [15].

The complexity question for wℓ for ℓ ≥ 2 is open.

Coloring graphs to produce walks without forbidden repeats

108



References

[1] J. Bang-Jensen, T. Bellitto and A. Yeo, Proper-walk connection num-
ber of graphs, J. Graph Theory, 96 (2021), 137–159.

[2] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L.
Montero and Z. Tuza, Proper connection of graphs, Discrete Math.,
312 (2012), 2550–2560.

[3] G. Chartrand, S. Devereaux and P. Zhang, Color-connected graphs
and information-transfer paths, Ars Combin., 144 (2019), 249–263.

[4] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow con-
nection in graphs, Math. Bohem., 133 (2008), 85–98.

[5] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, The rainbow
connectivity of a graph, Networks, 54 (2009), 75–81.

[6] S. Devereaux, G.L. Johns and P. Zhang, Color connection in graphs in-
termediate to proper and rainbow connection, J. Combin. Math. Com-
bin. Comput., 106 (2018), 309–325.
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