BULIETIN of The

TISTHMIE of

 GOMBNLITORLES and its IPPIGIIIONS
Editors-in-Chief:

Marco Buratti, Donald Kreher, Ortrud Oellermann, Tran van Trung

Duluth, Minnesota, U.S.A.
ISSN: 2689-0674 [Online] ISSN: 1183-1278 [Print]

Neighborhood face-magic labelings of ladders, fans, and wheels

Bryan Freyberg and Alexa Hedtke

Abstract

We introduce the following variation of type (a, b, c) magic labelings. Let $G=(V, E, F)$ be a planar graph and $f: V \cup E \cup F \rightarrow$ $\{1,2, \ldots,|V \cup E \cup F|\}$ be a bijection. Define the weight of a face as the sum of the labels of the vertices, edges, and faces bordering that face. If the weight of every s-sided face is equal to some fixed constant μ_{s} for all s, we call f a neighborhood face-magic labeling. We show that ladders, fans, wheels, and subdivided versions of all these families admit neighborhood face-magic labelings.

1 Introduction

Assume $a, b, c \in\{0,1\}$ and let G be a simple planar graph with vertex, edge, and face sets denoted by V, E, and F, respectively. A labeling of type (a, b, c) is an injective assignment of labels from $\{1,2, \ldots, a|V|+b|E|+c|F|\}$ to $V \cup E \cup F$ such that every vertex receives a labels, every edge receives b labels, and every face receives c labels. The weight of a face $f \in F$ is the sum of the label of f with the labels of the vertices and edges adjacent to f. The labeling is considered face-magic if the weight of every s-sided face is equal to some fixed constant for every s (different constants are allowed for different values of s).

The notion of face-magic labeling of type $(1,1,0)$ was first introduced by Lih in 1983 and later generalized to the definition just given [5]. For a survey of results in this area (and many other areas in graph labeling), we refer the reader to [2]. Figure 1 shows a face-magic labeling of type $(1,1,0)$. The weight of every triangular face is 36 and the weight of every 5 -sided face (there is only one) is 63 .

Figure 1: A Face-magic labeling of type ($1,1,0$)

One may wonder why the weight of a face f should be determined by the neighborhood of f with respect to vertices and edges but not with respect to faces. We introduce the following alternative way to define the weight of a face so that it is a function of all neighboring elements of the face.

Given a type $(1,1,1)$ labeling of a graph G and its planar embedding, define the neighborhood weight (from here on we omit the word "neighborhood") of a face f as the sum of the labels of the vertices, edges, and faces that border f. If the weights of every s-sided face is equal to some fixed constant for every s (different constants are allowed for different values of s), we will call the labeling neighborhood face-magic and the graph a neighborhood face-magic graph.

Figure 2: A neighborhood face-magic labeling of W_{3}

In general, it should be at least as difficult to find a neighborhood facemagic labeling as it is to find a type $(1,1,1)$ face-magic labeling of a graph. This is partly due to the fact that the weight of a face under the former labeling is a function of more labels than the weight of the same face under the latter labeling. Figure 2 shows a neighborhood face-magic labeling of the wheel graph W_{3}. The weight of all four triangular faces is 67 .

2 Tools

An $a \times b$ magic rectangle $M R(a, b)$ is an $a \times b$ array containing each of the first $a b$ positive integers exactly once such that the sum of elements in each row and the sum of elements in each column is equal to fixed constants ρ and σ, respectively. An $M R(3,5)$ is shown below.

7	5	4	10	14	40
15	13	8	3	1	40
2	6	12	11	9	40
24	24	24	24	24	

Harmuth proved the following in 1881.
Theorem 2.1 (Harmuth [3], [4]). An $a \times b$ magic rectangle exists if and only if $a \equiv b(\bmod 2)$, except if $a=1, b=1$, or $a=b=2$.

To address the case when $a \not \equiv b(\bmod 2)$, Froncek, Paramasivam, and Prajeesh introduced quasi-magic rectangles [1] in 2022. Let a be an odd integer and b an even integer. An $a \times b$ quasi-magic rectangle $Q M R(a, b: \lambda)$ is an a by b array such that each of the integers $1,2, \ldots, \lambda-1, \lambda+1, \ldots, a b+1$ appears exactly once, the sum of the elements in each row is equal to some constant ρ, and the sum of the elements in each column is equal to some constant σ.

Theorem 2.2 (Froncek et al. [1]). A quasi-magic rectangle $Q M R(a, 2 t$: $a t+1)$ exists for all odd $a \geq 1$ and $t \geq 1$ except when $t=1$ and $a \equiv 1$ $(\bmod 4)$.

Another well studied magic-type labeling that will be of use is the following. Let $G=(V, E)$ be a simple graph and $g: V \rightarrow\{1,2, \ldots,|V|\}$ a bijection. If there exists a constant k such that $w(v)=\sum_{u v \in E} g(u)=k$ for all $v \in V$, then we say g is a distance magic labeling and the graph G is a distance magic graph. For example, Figure 3 shows a distance magic labeling of the wheel graph W_{4} with $k=10$.

Given a planar embedding of G with face set F, the dual of G, denoted G^{*}, is the graph with vertex set F and two vertices are adjacent in G^{*} if and only if the corresponding two faces share an edge in G. The graph shown in Figure 3 is the dual of the graph in Figure 4. The neighborhood face-magic
labeling of the graph in the latter figure was obtained from the following observation.

Figure 3: A distance magic labeling of W_{4}

Figure 4: Neighborhood facemagic labeling of a grid graph

Observation 2.3. If a graph G admits a face-magic labeling of type ($1,1,0$) and its dual G^{*} admits a distance magic labeling, then G is a neighborhood face-magic graph.

Proof. Let $G=(V, E, F)$ have a face-magic labeling g of type $(1,1,0)$ where the weight of every s-sided face is k_{s}, and G^{*} have distance magic labeling h with magic constant k_{h}. The labeling $\ell: V \cup E \cup F \rightarrow\{1,2, \ldots,|V \cup E \cup F|\}$ defined as

$$
\begin{aligned}
\ell(v) & =g(v) \\
\ell(e) & =g(e) \\
\ell(f) & =h\left(f^{\prime}\right)+|V|+|E|
\end{aligned}
$$

where $v \in V, e \in E$, and $f^{\prime} \in V\left(G^{*}\right)$ corresponds to $f \in F$, is a neighborhood face-magic labeling of G since the weight of every s-sided face is $k_{s}+k_{h}+s(|V|+|E|)$.

Unfortunately, distance magic graphs are very rare, so this observation leads to limited results. For example, the wheel W_{n} is a self-dual graph (see Section 5 for the definition of W_{n}). It is known that all wheels are face-magic of type $(1,1,0)$ and W_{n} is distance magic if and only if $n=4$ $[6,8,7]$. So we obtain the following corollary.

Corollary 2.4. The wheel W_{4} is a neighborhood face-magic graph.

A more fruitful observation is the following.

Observation 2.5. If G is a neighborhood face-magic graph, then subdividing every edge of $G r$ times forms a graph H that is also neighborhood face-magic.

Proof. Leave the labels of G unchanged. Subdividing each edge of G by r creates $r|E|$ new edges and $r|E|$ new vertices. Each new vertex-edge pair (v, e) corresponding to the same edge in G can be labeled in a complementary way (symmetric about the middle) from the set $[|V|+|E|+$ $|F|+1,|V|+(2 r+1)|E|+|F|]$ so that the labels of v and e sum to $2|V|+(2 r+2)|E|+2|F|+1$. Therefore, each s-sided face of G corresponds to an $(r+1) s$-sided face of H whose weight has been increased by $r(2|V|+(2 r+2)|E|+2|F|+1)$. Since this number is constant, we have described a neighborhood face-magic labeling of H.

Figure 5 shows a neighborhood face-magic labeling of the wheel graph W_{6} and Figure 6 shows the labeling for the corresponding subdivided graph with $r=1$.

Figure 5: Neighborhood facemagic labeling of W_{6}

Figure 6: Construction from Observation 2.5 with $r=1$

3 Ladders

For $n \geq 2$, the ladder graph $L_{n} \cong P_{n} \square P_{2}$ is the graph with vertex set $V=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and edge set $E=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leq i \leq\right.$ $n-1\} \cup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\}$. Let F be the set of faces where $f_{i} \in F$ is the face bounded by the four edges $u_{i} v_{i}, u_{i} u_{i+1}, u_{i+1} v_{i+1}$, and $v_{i} v_{i+1}$ for $1 \leq i \leq n-1$. We denote the $2 n$-sided exterior face as f_{∞}. We will refer
to the set $R_{i}=\left\{u_{i}, v_{i}, u_{i} v_{i}\right\}$ as the $i^{\text {th }}$ rung of the ladder and the sets $\left\{u_{1}, u_{1} u_{2}, u_{2}, u_{2} u_{3}, \ldots, u_{n}\right\}$ and $\left\{v_{1}, v_{1} v_{2}, v_{2}, v_{2} v_{3}, \ldots, v_{n}\right\}$ as the two rails of the ladder. In total, we have $|V|=2 n,|E|=3 n-2$, and $|F|=n$.

Theorem 3.1. The ladder graph $L_{n} \cong P_{n} \square P_{2}$ is a neighborhood face-magic graph if and only if $n \geq 3$.

Proof. Let $G \cong L_{n}$ be embedded in the plane in the natural way. There does not exist a neighborhood face-magic labeling of L_{2}, for if there did, the label of the two faces would be the same. So we may assume $n \geq 3$ from now on. Let $S=[1,6 n-2]$ and form the partition $S=A \cup B$ where $A=[1,3 n-3]$ and $B=[3 n-2,6 n-2]$. Define $\ell: V \cup E \cup F \rightarrow S$ as follows. Let

$$
\begin{array}{ll}
\ell\left(f_{i}\right) & =i, \text { for } 1 \leq i \leq n-1 \\
\ell\left(u_{i} u_{i+1}\right) & =2 n-2-i, \text { for } 1 \leq i \leq n-2 \\
\ell\left(u_{n-1} u_{n}\right) & =2 n-2, \text { and } \\
\ell\left(v_{i} v_{i+1}\right) & =3 n-2-i, \text { for } 1 \leq i \leq n-1
\end{array}
$$

Thus far, we have assigned all the labels from A and only the rungs and f_{∞} remain to be labeled.

If n is odd, let M be a magic rectangle $M R(3, n)$ and assume WLOG the largest element $3 n$ lies in the last column of M. Otherwise, let M be a quasi-magic rectangle $\operatorname{QMR}(3, n: \lambda)$ such that the element $\lambda-1$ lies in the last column. Such an M exists by Theorem 2.1 or Theorem 2.2. Let σ be the column sum of M. Increase every element in M by $3 n-3$. If n is odd, replace the entry $6 n-3$ with $6 n-2$. If n is even, replace the entry $\lambda+3 n-4$ with $\lambda+3 n-3$. Let M^{\prime} denote this new $3 \times n$ array and let ℓ map column i of M^{\prime} to the $i^{\text {th }}$ rung of L_{n} in the natural way. Finally, let

$$
\ell\left(f_{\infty}\right)= \begin{cases}6 n-3 & n \text { is odd } \\ \lambda+3 n-4 & n \text { is even }\end{cases}
$$

We claim that ℓ is a neighborhood face-magic labeling of L_{n}. It is clear that ℓ is a bijection, so it remains to check the weights of the 4 -sided faces. Let $i \in[1, n-1]$ be given. If $i=1$, we have

$$
\begin{aligned}
w\left(f_{1}\right) & =\ell\left(f_{2}\right)+\ell\left(u_{1} u_{2}\right)+\ell\left(v_{1} v_{2}\right)+\ell\left(R_{1}\right)+\ell\left(R_{2}\right)+\ell\left(f_{\infty}\right) \\
& =2+(2 n-3)+(3 n-3)+2(\sigma+3(3 n-3))+\ell\left(f_{\infty}\right) \\
& =23 n-22+2 \sigma+\ell\left(f_{\infty}\right)
\end{aligned}
$$

If $2 \leq i \leq n-2$, we have

$$
\begin{aligned}
w\left(f_{i}\right) & =\ell\left(f_{i \pm 1}\right)+\ell\left(u_{i} u_{i+1}\right)+\ell\left(v_{i} v_{i+1}\right)+\ell\left(R_{i}\right)+\ell\left(R_{i+1}\right)+\ell\left(f_{\infty}\right) \\
& =2 i+(2 n-2-i)+(3 n-2-i)+2(\sigma+3(3 n-3))+\ell\left(f_{\infty}\right) \\
& =23 n-22+2 \sigma+\ell\left(f_{\infty}\right)
\end{aligned}
$$

Finally, if $i=n-1$, we obtain

$$
\begin{aligned}
w\left(f_{n-1}\right)= & \ell\left(f_{n-2}\right)+\ell\left(u_{n-1} u_{n}\right)+\ell\left(v_{n-1} v_{n}\right)+ \\
& \ell\left(R_{n-1}\right)+\ell\left(R_{n}\right)+\ell\left(f_{\infty}\right) \\
= & (3 n-4)+(3 n-2-(n-1))+ \\
& 2 \sigma+1+6(3 n-3))+\ell\left(f_{\infty}\right) \\
= & 23 n-22+2 \sigma+\ell\left(f_{\infty}\right) .
\end{aligned}
$$

Since the weight of every 4 -sided face is the same, we have proved the claim.

Figure 7 shows the neighborhood face-magic labeling of L_{5} produced by the construction of Theorem 3.1 in conjunction with the 3×5 magic rectangle from Section 2. The weight of each 4 -sided face is 168 .

$$
27
$$

Figure 7: A neighborhood face-magic labeling of L_{5}

4 Fans

The fan graph $F_{n} \cong P_{n}+K_{1}$ is the join of a path on $n \geq 2$ vertices and a single vertex called the hub. Let

$$
\begin{aligned}
& V\left(F_{n}\right)=\left\{v_{i}: 1 \leq i \leq n\right\} \cup\{h\}, \\
& E\left(F_{n}\right)=\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{h v_{i}: 1 \leq i \leq n\right\}, \text { and } \\
& F\left(F_{n}\right)=\left\{f_{i}: 1 \leq i \leq n-1\right\} \cup f_{\infty},
\end{aligned}
$$

where f_{i} is the triangular face bound by the edges $h v_{i}, v_{i} v_{i+1}$, and $h v_{i+1}$, and f_{∞} is the exterior $n+1$-sided face.

Theorem 4.1. The fan F_{n} is a neighborhood face-magic graph if and only if $n \geq 3$.

Proof. Assume $G \cong F_{n}$ is embedded in the plane as its namesake suggests. If $n=2$, the graph consists of a single triangle f_{1} with exterior triangle f_{∞}. Suppose the graph has a neighborhood face-magic labeling. Since both triangles share all 6 vertices and edges, the label of each face must be the same. But this is a contradiction, since the labeling is an injection. So, from now on we may assume $n \geq 3$.

We describe a labeling $\ell: V \cup E \cup F \rightarrow[1,4 n]$ as follows. Let $\ell\left(f_{i}\right)=i$ for $i \in[1, n-1], \ell\left(v_{i} v_{i+1}\right)=\left\lceil\frac{7 n-2}{2}\right\rceil-2 i$ for $i \in[1, n-2]$, and $\ell(h)=n$. If n is odd, let

$$
\begin{array}{ll}
\ell\left(f_{\infty}\right) & =\frac{5 n-1}{2}, \\
\ell\left(v_{n-1} v_{n}\right) & =\frac{5 n+3}{2}, \text { and } \\
\ell\left(\left\{v_{i}, h v_{i}\right\}\right) & =\left\{s_{i}, t_{i}: s_{i} \in S_{j}, t_{i} \in T_{j}, s_{i}+t_{i}=5 n+1\right\} \text { for } i \in[1, n],
\end{array}
$$

where $S_{1}=\left[n+1, \frac{3 n+5}{2}\right], S_{2}=\left\{\frac{3 n+9}{2}, \frac{3 n+13}{2}, \ldots, \frac{5 n-5}{2}\right\}, T_{1}=\left[\frac{7 n-3}{2}, 4 n\right]$, and $T_{2}=\left\{\frac{5 n+7}{2}, \frac{5 n+11}{2}, \ldots, \frac{7 n-7}{2}\right\}$. Notice, $\left|S_{1}\right|=\left|T_{1}\right|=\frac{n+5}{2}$ and $\left|S_{2}\right|=$ $\left|T_{2}\right|=\frac{n-5}{2}$, so the n pairs $\left(s_{i}, t_{i}\right)$ may be chosen so they form a (disjoint) partition of $S_{1} \cup S_{2} \cup T_{1} \cup T_{2}$.

Similarly, if n is even, let

$$
\begin{array}{ll}
\ell\left(f_{\infty}\right) & =4 n-1 \\
\ell\left(v_{n-1} v_{n}\right) & =\frac{5 n}{2}, \\
\ell\left(\left\{v_{i}, h v_{i}\right\}\right) & =\left\{s_{i}^{\prime}, t_{i}^{\prime}: s_{i}^{\prime} \in S_{j}^{\prime}, t_{i}^{\prime} \in T_{j}^{\prime}, s_{i}^{\prime}+t_{i}^{\prime}=5 n\right\} \text { for } i \in[1, n-1], \\
\ell\left(v_{n}\right) & =4 n, \text { and } \\
\ell\left(h v_{n}\right) & =n+1,
\end{array}
$$

where $S_{1}^{\prime}=\left[n+2, \frac{3 n}{2}+2\right], S_{2}^{\prime}=\left\{\frac{3 n}{2}+4, \frac{3 n}{2}+6, \ldots, \frac{5 n}{2}-2\right\}, T_{1}^{\prime}=\left[\frac{7 n}{2}-\right.$ $2,4 n-2]$, and $T_{2}^{\prime}=\left\{\frac{5 n}{2}+2, \frac{5 n}{2}+4, \ldots, \frac{7 n}{2}-4\right\}$. Notice, $\left|S_{1}^{\prime}\right|=\left|T_{1}^{\prime}\right|=\frac{n}{2}+1$ and $\left|S_{2}^{\prime}\right|=\left|T_{2}^{\prime}\right|=\frac{n}{2}-2$, so the $n-1$ pairs $\left(s_{i}^{\prime}, t_{i}^{\prime}\right)$ may be chosen so they form a partition of $S_{1}^{\prime} \cup S_{2}^{\prime} \cup T_{1}^{\prime} \cup T_{2}^{\prime}$.

With the labeling completed, we may now compute the weights. Let $f_{i} \in F$ be given. If $i \in[2, n-2]$, then the weight of f_{i} is

$$
\begin{aligned}
w\left(f_{i}\right)= & \ell\left(f_{i-1}\right)+\ell\left(f_{i+1}\right)+\ell(h)+\ell\left(v_{i} v_{i+1}\right)+ \\
& \ell\left(v_{i}\right)+\ell\left(h v_{i}\right)+\ell\left(v_{i+1}\right)+\ell\left(h v_{i+1}\right)+\ell\left(f_{\infty}\right) .
\end{aligned}
$$

If n is odd, then this is

$$
\begin{aligned}
w\left(f_{i}\right) & =2 i+n+\frac{7 n-1}{2}-2 i+2(5 n+1)+\frac{5 n-1}{2} \\
& =17 n+1
\end{aligned}
$$

On the other hand, if n is even it is

$$
\begin{aligned}
w\left(f_{i}\right) & =2 i+n+\frac{7 n}{2}-1-2 i+2(5 n)+4 n-1 \\
& =\frac{37 n}{2}-2 .
\end{aligned}
$$

Finally, for $i \in\{1, n-1\}$, we have

$$
\begin{aligned}
w\left(f_{1}\right)= & \ell\left(f_{2}\right)+\ell(h)+\ell\left(v_{1} v_{2}\right)+\ell\left(f_{\infty}\right)+ \\
& \ell\left(v_{1}\right)+\ell\left(h v_{1}\right)+\ell\left(v_{2}\right)+\ell\left(h v_{2}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
w\left(f_{n-1}\right)= & \ell\left(f_{n-2}\right)+\ell(h)+\ell\left(v_{n-1} v_{n}\right)+\ell\left(f_{\infty}\right)+ \\
& \ell\left(v_{n-1}\right)+\ell\left(h v_{n-1}\right)+\ell\left(v_{n}\right)+\ell\left(h v_{n}\right) .
\end{aligned}
$$

It is straightforward to check that

$$
w\left(f_{1}\right)=w\left(f_{n-1}\right)= \begin{cases}17 n+1 & n \text { is odd } \\ \frac{37 n}{2}-2 & n \text { is even }\end{cases}
$$

Since the weight of every triangular face of G is the same, we have described a neighborhood face-magic labeling of G.

Figures 8 and 9 show the construction from Theorem 4.1 applied to the fans F_{5} and F_{6}, respectively.

12
Figure 8: Neighborhood facemagic labeling of F_{5}

23

Figure 9: Neighborhood facemagic labeling of F_{6}

5 Wheels

The wheel graph $W_{n} \cong C_{n}+K_{1}$ is the join of a cycle of length $n \geq 3$ and a single vertex called the hub. The edges incident with the hub are called
spokes and the edges around the perimeter are called rim edges. Figures $2,3,10,5$, and 11 show $W_{3}, W_{4}, W_{5}, W_{6}$, and W_{8}, respectively.
Theorem 5.1. The wheel W_{n} is a neighborhood face-magic graph if and only if $n \geq 3$.

Proof. Let $G=(V, E, F) \cong W_{n}$ be the natural embedding of the wheel graph with vertex set $V=\left\{v_{i}: i \in[1, n]\right\} \cup\{h\}$ and edge set $E=E_{s} \cup E_{r}$ where $E_{s}=\left\{h v_{i}: i \in[1, n]\right\}$ are the spoke edges and $E_{r}=\left\{v_{i} v_{i+1}: i \in\right.$ $[1, n]\}$ (with arithmetic performed modulo n) are the rim edges. Denote the triangular face enclosed by the set of edges $\left\{h v_{i}, h v_{i+1}, v_{i} v_{i+1}\right\}$ as f_{i} for $i \in[1, n]$, and the n-sided exterior face by f_{∞}. By the labeling shown in Figure 2, we may assume $n \geq 4$. We describe a type ($1,1,1$) labeling $\ell: V \cup E \cup F \rightarrow[1,4 n+2]$ as follows.

Case 1. n is odd and $n \geq 5$.
For $i \in[1, n]$ let $\ell\left(f_{i}\right)=i$. Define $m=\frac{5 n+3}{2}$ and label the rim edges

$$
\begin{aligned}
\ell\left(v_{1} v_{2}\right) & =m-1 \\
\ell\left(v_{1} v_{n}\right) & =m+1 \\
\ell\left(v_{i} v_{i+1}\right) & =m+n+1-2 i
\end{aligned}
$$

for $i \in[2, n-1]$.
The labels that remain form the set $A \cup B \cup C$ where

$$
\begin{aligned}
A= & {[n+1, m-n+2] } \\
B= & \{m-n+4, m-n+6, \ldots, m-5, m-3\} \cup \\
& \{m+3, m+5, \ldots, m+n-6, m+n-4\}, \text { and } \\
C= & {[m+n-2,4 n+2] }
\end{aligned}
$$

It is easy to see that $|A|=|C|=\frac{n+7}{2}$ and $|B|=n-5$. Form the set of pairs S such that
$S=\{(a, c): a+c=5 n+3, a \in A, c \in C\} \cup\left\{\left(b, b^{\prime}\right): b+b^{\prime}=5 n+3, b, b^{\prime} \in B\right\}$.
Notice that S partitions the remaining labels into $\frac{n+7}{2}+\frac{n-5}{2}=n+1$ pairs with common sum $5 n+3$. We complete the assignment ℓ by forming an arbitrary bijection between $\left\{\left(h, f_{\infty}\right),\left(v_{i}, h v_{i}\right): i \in[1, n]\right\}$ and S.

Let $i \in[1, n]$. We have

$$
\begin{aligned}
w\left(f_{i}\right)= & \ell\left(v_{i}\right)+\ell\left(h v_{i}\right)+\ell\left(v_{i+1}\right)+\ell\left(h v_{i+1}\right)+\ell(h)+\ell\left(f_{\infty}\right)+ \\
& \ell\left(v_{i} v_{i+1}\right)+\ell\left(f_{i-1}\right)+\ell\left(f_{i+1}\right) \\
= & 3(5 n+3)+(m+n+1) \\
= & \frac{37 n+23}{2}
\end{aligned}
$$

The next case follows in much the same fashion.

Case 2. n is even and $n \geq 4$.
For $i \in[1, n]$ let $\ell\left(f_{i}\right)=i$. Define $m=\frac{5 n+2}{2}$ and let

$$
\begin{array}{ll}
\ell\left(f_{\infty}\right) & =4 n+1, \\
\ell(h) & =m+2, \\
\ell\left(v_{1}\right) & =4 n+2, \\
\ell\left(h v_{1}\right) & =n+1, \\
\ell\left(v_{1} v_{2}\right) & =m-2, \text { and } \\
\ell\left(v_{1} v_{n}\right) & =m .
\end{array}
$$

For $i \in[2, n-1]$, let

$$
\ell\left(v_{i} v_{i+1}\right)=m+n-2 i+1
$$

The labels that remain form the set $A \cup B \cup C$ where

$$
\begin{aligned}
A & =[n+2, m-n+2] \\
B & =\{m-n+4, m-n+6, \ldots, m-4\} \\
& \cup\{m+4, m+6, \ldots, m+n-6, m+n-4\}, \text { and } \\
C & =[m+n-2,4 n]
\end{aligned}
$$

It is easy to see that $|A|=|C|=\frac{n+4}{2}$ and $|B|=n-6$. Form the set of pairs S such that
$S=\{(a, c): a+c=5 n+2, a \in A, c \in C\} \cup\left\{\left(b, b^{\prime}\right): b+b^{\prime}=5 n+2, b, b^{\prime} \in B\right\}$.
Notice that S partitions the remaining labels into $\frac{n+4}{2}+\frac{n-6}{2}=n-1$ pairs with common sum $5 n+2$. We complete the assignment ℓ by forming an arbitrary bijection between $\left\{\left(v_{i}, h v_{i}\right): i \in[2, n]\right\}$ and S.

Let $i \in[1, n]$. We have

$$
\begin{aligned}
w\left(f_{i}\right) & =\ell\left(v_{i}\right)+\ell\left(h v_{i}\right)+\ell\left(v_{i+1}\right)+\ell\left(h v_{i+1}\right)+\ell\left(v_{i} v_{i+1}\right)+\ell\left(f_{i \pm 1}\right)+ \\
& \ell(h)+\ell\left(f_{\infty}\right) \\
& =(11 n+m+5)+(4 n+m+3) \\
= & 20 n+10
\end{aligned}
$$

In both cases we have shown that the weight of every triangular face is equal to the same constant. The weight of the n-sided exterior face is irrelevant since $n>3$. Hence, we have proved the claim.

Figures 10 and 11 demonstrate the labeling just described for $n=5$ and $n=8$, respectively.

Figure 10: Neighborhood facemagic labeling of W_{5}

Figure 11: Neighborhood facemagic labeling of W_{8}

6 Concluding remarks

We have shown that all ladders, fans, and wheels are neighborhood facemagic graphs. By Observation 2.5, any subdivided version of these graphs is also neighborhood face-magic. One obvious path forward is to consider other infinite families of graphs. Another problem to consider is the type $(a, b, 1)$ analog of neighborhood face-magic labeling where $a=0$ or $b=0$.

7 Acknowledgements

This work was partially supported by the University of Minnesota Office of Undergraduate Research.

References

[1] D. Froncek, K. Paramasivam, and A.V. Prajeesh, Quasi-magic rectangles, J. Combin. Des., 30 (2022), 193-202.
[2] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin., 5 (1998), Dynamic Survey 6, 43 pp.
[3] T. Harmuth, Ueber magische Quadrate und ähnliche Zahlenfiguren, Arch. Math. Phys., 66 (1881), 286-313.
[4] T. Harmuth, Ueber magische Rechtecke mit ungeraden Seitenzahlen, Arch. Math. Phys., 66 (1881), 413-447.
[5] K. Lih, On magic and consecutive labelings of plane graphs, Util. Math., 24 (1983), 165-197.
[6] A. Lladó, J. Moragas. Cycle-magic graphs, Discrete Math., 307 (2007), 2925-2933.
[7] M. Miller, C. Rodger, R. Simanjuntak. Distance magic labelings of graphs, Austral. J. Combin., 28 (2003), 305-315.
[8] M. Roswitha, E.T. Baskoro, T.K. Maryati, N.A. Kurdhi, I. Susanti. Further results on cycle-supermagic labeling, AKCE Int. J. Graphs Comb., 10 (2013), 211-220.

[^0]
[^0]: Bryan Freyberg and Alexa Hedtke
 University of Minnesota Duluth, Duluth MN, USA
 frey0031@d.umn.edu, hedtk041@d.umn.edu

