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Neighborhood face-magic labelings of ladders,
fans, and wheels

Bryan Freyberg and Alexa Hedtke

Abstract. We introduce the following variation of type (a, b, c) magic la-
belings. Let G = (V,E, F ) be a planar graph and f : V ∪ E ∪ F →
{1, 2, . . . , |V ∪ E ∪ F |} be a bijection. Define the weight of a face as the
sum of the labels of the vertices, edges, and faces bordering that face. If
the weight of every s-sided face is equal to some fixed constant µs for all s,
we call f a neighborhood face-magic labeling. We show that ladders, fans,
wheels, and subdivided versions of all these families admit neighborhood
face-magic labelings.

1 Introduction

Assume a, b, c ∈ {0, 1} and let G be a simple planar graph with vertex,
edge, and face sets denoted by V,E, and F, respectively. A labeling of type
(a, b, c) is an injective assignment of labels from {1, 2, . . . , a|V |+b|E|+c|F |}
to V ∪ E ∪ F such that every vertex receives a labels, every edge receives
b labels, and every face receives c labels. The weight of a face f ∈ F is the
sum of the label of f with the labels of the vertices and edges adjacent to
f. The labeling is considered face-magic if the weight of every s-sided face
is equal to some fixed constant for every s (different constants are allowed
for different values of s).

The notion of face-magic labeling of type (1, 1, 0) was first introduced by
Lih in 1983 and later generalized to the definition just given [5]. For a
survey of results in this area (and many other areas in graph labeling), we
refer the reader to [2]. Figure 1 shows a face-magic labeling of type (1, 1, 0).
The weight of every triangular face is 36 and the weight of every 5-sided
face (there is only one) is 63.
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Figure 1: A Face-magic labeling of type (1, 1, 0)

One may wonder why the weight of a face f should be determined by the
neighborhood of f with respect to vertices and edges but not with respect
to faces. We introduce the following alternative way to define the weight
of a face so that it is a function of all neighboring elements of the face.

Given a type (1, 1, 1) labeling of a graph G and its planar embedding, define
the neighborhood weight (from here on we omit the word “neighborhood”)
of a face f as the sum of the labels of the vertices, edges, and faces that
border f. If the weights of every s-sided face is equal to some fixed constant
for every s (different constants are allowed for different values of s), we
will call the labeling neighborhood face-magic and the graph a neighborhood
face-magic graph.
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Figure 2: A neighborhood face-magic labeling of W3

In general, it should be at least as difficult to find a neighborhood face-
magic labeling as it is to find a type (1, 1, 1) face-magic labeling of a graph.
This is partly due to the fact that the weight of a face under the former
labeling is a function of more labels than the weight of the same face under
the latter labeling. Figure 2 shows a neighborhood face-magic labeling of
the wheel graph W3. The weight of all four triangular faces is 67.
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2 Tools

An a× b magic rectangle MR(a, b) is an a× b array containing each of the
first ab positive integers exactly once such that the sum of elements in each
row and the sum of elements in each column is equal to fixed constants ρ
and σ, respectively. An MR(3, 5) is shown below.

7 5 4 10 14 40
15 13 8 3 1 40
2 6 12 11 9 40
24 24 24 24 24

Harmuth proved the following in 1881.

Theorem 2.1 (Harmuth [3], [4]). An a × b magic rectangle exists if and
only if a ≡ b (mod 2), except if a = 1, b = 1, or a = b = 2.

To address the case when a ̸≡ b (mod 2), Froncek, Paramasivam, and Pra-
jeesh introduced quasi-magic rectangles [1] in 2022. Let a be an odd integer
and b an even integer. An a× b quasi-magic rectangle QMR(a, b : λ) is an
a by b array such that each of the integers 1, 2, . . . , λ− 1, λ+ 1, . . . , ab+ 1
appears exactly once, the sum of the elements in each row is equal to some
constant ρ, and the sum of the elements in each column is equal to some
constant σ.

Theorem 2.2 (Froncek et al. [1]). A quasi-magic rectangle QMR(a, 2t :
at + 1) exists for all odd a ≥ 1 and t ≥ 1 except when t = 1 and a ≡ 1
(mod 4).

Another well studied magic-type labeling that will be of use is the following.
Let G = (V,E) be a simple graph and g : V → {1, 2, . . . , |V |} a bijection.
If there exists a constant k such that w(v) =

∑
uv∈E g(u) = k for all v ∈ V,

then we say g is a distance magic labeling and the graph G is a distance
magic graph. For example, Figure 3 shows a distance magic labeling of the
wheel graph W4 with k = 10.

Given a planar embedding of G with face set F, the dual of G, denoted G∗,
is the graph with vertex set F and two vertices are adjacent in G∗ if and
only if the corresponding two faces share an edge in G. The graph shown in
Figure 3 is the dual of the graph in Figure 4. The neighborhood face-magic
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labeling of the graph in the latter figure was obtained from the following
observation.
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Figure 3: A distance magic label-
ing of W4
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Figure 4: Neighborhood face-
magic labeling of a grid graph

Observation 2.3. If a graph G admits a face-magic labeling of type (1, 1, 0)
and its dual G∗ admits a distance magic labeling, then G is a neighborhood
face-magic graph.

Proof. Let G = (V,E, F ) have a face-magic labeling g of type (1, 1, 0) where
the weight of every s-sided face is ks, and G∗ have distance magic labeling h
with magic constant kh. The labeling ℓ : V ∪E∪F → {1, 2, . . . , |V ∪E∪F |}
defined as

ℓ(v) = g(v)
ℓ(e) = g(e)
ℓ(f) = h(f ′) + |V |+ |E|

where v ∈ V, e ∈ E, and f ′ ∈ V (G∗) corresponds to f ∈ F , is a neigh-
borhood face-magic labeling of G since the weight of every s-sided face is
ks + kh + s(|V |+ |E|).

Unfortunately, distance magic graphs are very rare, so this observation
leads to limited results. For example, the wheel Wn is a self-dual graph
(see Section 5 for the definition of Wn). It is known that all wheels are
face-magic of type (1, 1, 0) and Wn is distance magic if and only if n = 4
[6, 8, 7]. So we obtain the following corollary.

Corollary 2.4. The wheel W4 is a neighborhood face-magic graph.

A more fruitful observation is the following.
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Observation 2.5. If G is a neighborhood face-magic graph, then subdi-
viding every edge of G r times forms a graph H that is also neighborhood
face-magic.

Proof. Leave the labels of G unchanged. Subdividing each edge of G by
r creates r|E| new edges and r|E| new vertices. Each new vertex-edge
pair (v, e) corresponding to the same edge in G can be labeled in a com-
plementary way (symmetric about the middle) from the set [|V | + |E| +
|F | + 1, |V | + (2r + 1)|E| + |F |] so that the labels of v and e sum to
2|V | + (2r + 2)|E| + 2|F | + 1. Therefore, each s-sided face of G corre-
sponds to an (r + 1)s-sided face of H whose weight has been increased by
r(2|V | + (2r + 2)|E| + 2|F | + 1). Since this number is constant, we have
described a neighborhood face-magic labeling of H.

Figure 5 shows a neighborhood face-magic labeling of the wheel graph W6

and Figure 6 shows the labeling for the corresponding subdivided graph
with r = 1.
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Figure 5: Neighborhood face-
magic labeling of W6
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Figure 6: Construction from Ob-
servation 2.5 with r = 1

3 Ladders

For n ≥ 2, the ladder graph Ln
∼= Pn□P2 is the graph with vertex set

V = {ui, vi : 1 ≤ i ≤ n} and edge set E = {uiui+1, vivi+1 : 1 ≤ i ≤
n − 1} ∪ {uivi : 1 ≤ i ≤ n}. Let F be the set of faces where fi ∈ F is
the face bounded by the four edges uivi, uiui+1, ui+1vi+1, and vivi+1 for
1 ≤ i ≤ n − 1. We denote the 2n-sided exterior face as f∞. We will refer

Neighborhood face-magic labelings

142



to the set Ri = {ui, vi, uivi} as the ith rung of the ladder and the sets
{u1, u1u2, u2, u2u3, . . . , un} and {v1, v1v2, v2, v2v3, . . . , vn} as the two rails
of the ladder. In total, we have |V | = 2n, |E| = 3n− 2, and |F | = n.

Theorem 3.1. The ladder graph Ln
∼= Pn□P2 is a neighborhood face-magic

graph if and only if n ≥ 3.

Proof. Let G ∼= Ln be embedded in the plane in the natural way. There
does not exist a neighborhood face-magic labeling of L2, for if there did,
the label of the two faces would be the same. So we may assume n ≥ 3
from now on. Let S = [1, 6n− 2] and form the partition S = A ∪B where
A = [1, 3n − 3] and B = [3n − 2, 6n − 2]. Define ℓ : V ∪ E ∪ F → S as
follows. Let

ℓ(fi) = i, for 1 ≤ i ≤ n− 1,
ℓ(uiui+1) = 2n− 2− i, for 1 ≤ i ≤ n− 2,
ℓ(un−1un) = 2n− 2, and
ℓ(vivi+1) = 3n− 2− i, for 1 ≤ i ≤ n− 1.

Thus far, we have assigned all the labels from A and only the rungs and
f∞ remain to be labeled.

If n is odd, let M be a magic rectangle MR(3, n) and assume WLOG the
largest element 3n lies in the last column of M. Otherwise, let M be a
quasi-magic rectangle QMR(3, n : λ) such that the element λ − 1 lies in
the last column. Such an M exists by Theorem 2.1 or Theorem 2.2. Let σ
be the column sum of M. Increase every element in M by 3n − 3. If n is
odd, replace the entry 6n − 3 with 6n − 2. If n is even, replace the entry
λ+ 3n− 4 with λ+ 3n− 3. Let M ′ denote this new 3× n array and let ℓ
map column i of M ′ to the ith rung of Ln in the natural way. Finally, let

ℓ(f∞) =

{
6n− 3 n is odd
λ+ 3n− 4 n is even

.

We claim that ℓ is a neighborhood face-magic labeling of Ln. It is clear that
ℓ is a bijection, so it remains to check the weights of the 4-sided faces. Let
i ∈ [1, n− 1] be given. If i = 1, we have

w(f1) = ℓ(f2) + ℓ(u1u2) + ℓ(v1v2) + ℓ(R1) + ℓ(R2) + ℓ(f∞)
= 2 + (2n− 3) + (3n− 3) + 2(σ + 3(3n− 3)) + ℓ(f∞)
= 23n− 22 + 2σ + ℓ(f∞).
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If 2 ≤ i ≤ n− 2, we have

w(fi) = ℓ(fi±1) + ℓ(uiui+1) + ℓ(vivi+1) + ℓ(Ri) + ℓ(Ri+1) + ℓ(f∞)
= 2i+ (2n− 2− i) + (3n− 2− i) + 2(σ + 3(3n− 3)) + ℓ(f∞)
= 23n− 22 + 2σ + ℓ(f∞).

Finally, if i = n− 1, we obtain

w(fn−1) = ℓ(fn−2) + ℓ(un−1un) + ℓ(vn−1vn)+
ℓ(Rn−1) + ℓ(Rn) + ℓ(f∞)

= (3n− 4) + (3n− 2− (n− 1))+
2σ + 1 + 6(3n− 3)) + ℓ(f∞)

= 23n− 22 + 2σ + ℓ(f∞).

Since the weight of every 4-sided face is the same, we have proved the
claim.

Figure 7 shows the neighborhood face-magic labeling of L5 produced by the
construction of Theorem 3.1 in conjunction with the 3× 5 magic rectangle
from Section 2. The weight of each 4-sided face is 168.
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Figure 7: A neighborhood face-magic labeling of L5

4 Fans

The fan graph Fn
∼= Pn +K1 is the join of a path on n ≥ 2 vertices and a

single vertex called the hub. Let

V (Fn) = {vi : 1 ≤ i ≤ n} ∪ {h},
E(Fn) = {vivi+1 : 1 ≤ i ≤ n− 1} ∪ {hvi : 1 ≤ i ≤ n}, and
F (Fn) = {fi : 1 ≤ i ≤ n− 1} ∪ f∞,
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where fi is the triangular face bound by the edges hvi, vivi+1, and hvi+1,
and f∞ is the exterior n+ 1-sided face.

Theorem 4.1. The fan Fn is a neighborhood face-magic graph if and only
if n ≥ 3.

Proof. Assume G ∼= Fn is embedded in the plane as its namesake suggests.
If n = 2, the graph consists of a single triangle f1 with exterior triangle
f∞. Suppose the graph has a neighborhood face-magic labeling. Since both
triangles share all 6 vertices and edges, the label of each face must be the
same. But this is a contradiction, since the labeling is an injection. So,
from now on we may assume n ≥ 3.

We describe a labeling ℓ : V ∪ E ∪ F → [1, 4n] as follows. Let ℓ(fi) = i for
i ∈ [1, n − 1], ℓ(vivi+1) = ⌈ 7n−2

2 ⌉ − 2i for i ∈ [1, n − 2], and ℓ(h) = n. If n
is odd, let

ℓ(f∞) = 5n−1
2 ,

ℓ(vn−1vn) = 5n+3
2 , and

ℓ({vi, hvi}) = {si, ti : si ∈ Sj , ti ∈ Tj , si + ti = 5n+ 1} for i ∈ [1, n],

where S1 = [n + 1, 3n+5
2 ], S2 = { 3n+9

2 , 3n+13
2 , . . . , 5n−5

2 }, T1 = [ 7n−3
2 , 4n],

and T2 = { 5n+7
2 , 5n+11

2 , . . . , 7n−7
2 }. Notice, |S1| = |T1| = n+5

2 and |S2| =
|T2| = n−5

2 , so the n pairs (si, ti) may be chosen so they form a (disjoint)
partition of S1 ∪ S2 ∪ T1 ∪ T2.

Similarly, if n is even, let

ℓ(f∞) = 4n− 1,
ℓ(vn−1vn) = 5n

2 ,
ℓ({vi, hvi}) = {s′i, t′i : s′i ∈ S′

j , t
′
i ∈ T ′

j , s
′
i + t′i = 5n} for i ∈ [1, n− 1],

ℓ(vn) = 4n, and
ℓ(hvn) = n+ 1,

where S′
1 = [n + 2, 3n

2 + 2], S′
2 = { 3n

2 + 4, 3n
2 + 6, . . . , 5n

2 − 2}, T ′
1 = [ 7n2 −

2, 4n−2], and T ′
2 = { 5n

2 +2, 5n
2 +4, . . . , 7n

2 −4}. Notice, |S′
1| = |T ′

1| = n
2 +1

and |S′
2| = |T ′

2| = n
2 − 2, so the n − 1 pairs (s′i, t

′
i) may be chosen so they

form a partition of S′
1 ∪ S′

2 ∪ T ′
1 ∪ T ′

2.

With the labeling completed, we may now compute the weights. Let fi ∈ F
be given. If i ∈ [2, n− 2], then the weight of fi is

w(fi) = ℓ(fi−1) + ℓ(fi+1) + ℓ(h) + ℓ(vivi+1)+
ℓ(vi) + ℓ(hvi) + ℓ(vi+1) + ℓ(hvi+1) + ℓ(f∞).
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If n is odd, then this is

w(fi) = 2i+ n+ 7n−1
2 − 2i+ 2(5n+ 1) + 5n−1

2
= 17n+ 1.

On the other hand, if n is even it is

w(fi) = 2i+ n+ 7n
2 − 1− 2i+ 2(5n) + 4n− 1

= 37n
2 − 2.

Finally, for i ∈ {1, n− 1}, we have

w(f1) = ℓ(f2) + ℓ(h) + ℓ(v1v2) + ℓ(f∞)+
ℓ(v1) + ℓ(hv1) + ℓ(v2) + ℓ(hv2),

and
w(fn−1) = ℓ(fn−2) + ℓ(h) + ℓ(vn−1vn) + ℓ(f∞)+

ℓ(vn−1) + ℓ(hvn−1) + ℓ(vn) + ℓ(hvn).

It is straightforward to check that

w(f1) = w(fn−1) =

{
17n+ 1 n is odd
37n
2 − 2 n is even

.

Since the weight of every triangular face of G is the same, we have described
a neighborhood face-magic labeling of G.

Figures 8 and 9 show the construction from Theorem 4.1 applied to the
fans F5 and F6, respectively.
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Figure 8: Neighborhood face-
magic labeling of F5
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Figure 9: Neighborhood face-
magic labeling of F6

5 Wheels

The wheel graph Wn
∼= Cn +K1 is the join of a cycle of length n ≥ 3 and

a single vertex called the hub. The edges incident with the hub are called
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spokes and the edges around the perimeter are called rim edges. Figures
2, 3, 10, 5, and 11 show W3, W4, W5, W6, and W8, respectively.

Theorem 5.1. The wheel Wn is a neighborhood face-magic graph if and
only if n ≥ 3.

Proof. Let G = (V,E, F ) ∼= Wn be the natural embedding of the wheel
graph with vertex set V = {vi : i ∈ [1, n]} ∪ {h} and edge set E = Es ∪Er

where Es = {hvi : i ∈ [1, n]} are the spoke edges and Er = {vivi+1 : i ∈
[1, n]} (with arithmetic performed modulo n) are the rim edges. Denote
the triangular face enclosed by the set of edges {hvi, hvi+1, vivi+1} as fi
for i ∈ [1, n], and the n-sided exterior face by f∞. By the labeling shown
in Figure 2, we may assume n ≥ 4. We describe a type (1, 1, 1) labeling
ℓ : V ∪ E ∪ F → [1, 4n+ 2] as follows.

Case 1. n is odd and n ≥ 5.
For i ∈ [1, n] let ℓ(fi) = i. Define m = 5n+3

2 and label the rim edges

ℓ(v1v2) = m− 1,
ℓ(v1vn) = m+ 1,
ℓ(vivi+1) = m+ n+ 1− 2i,

for i ∈ [2, n− 1].

The labels that remain form the set A ∪B ∪ C where

A = [n+ 1,m− n+ 2],
B = {m− n+ 4,m− n+ 6, . . . ,m− 5,m− 3}∪

{m+ 3,m+ 5, . . . ,m+ n− 6,m+ n− 4}, and
C = [m+ n− 2, 4n+ 2].

It is easy to see that |A| = |C| = n+7
2 and |B| = n − 5. Form the set of

pairs S such that

S = {(a, c) : a+c = 5n+3, a ∈ A, c ∈ C}∪{(b, b′) : b+b′ = 5n+3, b, b′ ∈ B}.
Notice that S partitions the remaining labels into n+7

2 + n−5
2 = n+1 pairs

with common sum 5n + 3. We complete the assignment ℓ by forming an
arbitrary bijection between {(h, f∞), (vi, hvi) : i ∈ [1, n]} and S.

Let i ∈ [1, n]. We have

w(fi) = ℓ(vi) + ℓ(hvi) + ℓ(vi+1) + ℓ(hvi+1) + ℓ(h) + ℓ(f∞)+
ℓ(vivi+1) + ℓ(fi−1) + ℓ(fi+1)

= 3(5n+ 3) + (m+ n+ 1)
= 37n+23

2 .
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The next case follows in much the same fashion.

Case 2. n is even and n ≥ 4.
For i ∈ [1, n] let ℓ(fi) = i. Define m = 5n+2

2 and let

ℓ(f∞) = 4n+ 1,
ℓ(h) = m+ 2,
ℓ(v1) = 4n+ 2,
ℓ(hv1) = n+ 1,
ℓ(v1v2) = m− 2, and
ℓ(v1vn) = m.

For i ∈ [2, n− 1], let

ℓ(vivi+1) = m+ n− 2i+ 1.

The labels that remain form the set A ∪B ∪ C where

A = [n+ 2,m− n+ 2],
B = {m− n+ 4,m− n+ 6, . . . ,m− 4}

∪ {m+ 4,m+ 6, . . . ,m+ n− 6,m+ n− 4}, and
C = [m+ n− 2, 4n].

It is easy to see that |A| = |C| = n+4
2 and |B| = n − 6. Form the set of

pairs S such that

S = {(a, c) : a+c = 5n+2, a ∈ A, c ∈ C}∪{(b, b′) : b+b′ = 5n+2, b, b′ ∈ B}.

Notice that S partitions the remaining labels into n+4
2 + n−6

2 = n− 1 pairs
with common sum 5n + 2. We complete the assignment ℓ by forming an
arbitrary bijection between {(vi, hvi) : i ∈ [2, n]} and S.

Let i ∈ [1, n]. We have

w(fi) = ℓ(vi) + ℓ(hvi) + ℓ(vi+1) + ℓ(hvi+1) + ℓ(vivi+1) + ℓ(fi±1)+
ℓ(h) + ℓ(f∞)

= (11n+m+ 5) + (4n+m+ 3)
= 20n+ 10.

In both cases we have shown that the weight of every triangular face is equal
to the same constant. The weight of the n-sided exterior face is irrelevant
since n > 3. Hence, we have proved the claim.
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Figures 10 and 11 demonstrate the labeling just described for n = 5 and
n = 8, respectively.
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Figure 10: Neighborhood face-
magic labeling of W5
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Figure 11: Neighborhood face-
magic labeling of W8

6 Concluding remarks

We have shown that all ladders, fans, and wheels are neighborhood face-
magic graphs. By Observation 2.5, any subdivided version of these graphs
is also neighborhood face-magic. One obvious path forward is to consider
other infinite families of graphs. Another problem to consider is the type
(a, b, 1) analog of neighborhood face-magic labeling where a = 0 or b = 0.
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