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Ascending Ramsey sequences in graphs

Gary Chartrand, Eddie Cheng and Ping Zhang∗

Abstract. For positive integers m and t with m ≥ t, let G be a graph
with m edges each of which is assigned one of t colors, where each color
is assigned to at least one edge. For such a t-edge coloring c of G, an
ascending Ramsey sequence in G with respect to c is a sequence G1, G2,
. . ., Gk of pairwise edge-disjoint subgraphs of G such that each subgraph Gi

(1 ≤ i ≤ k) is monochromatic and Gi is isomorphic to a proper subgraph
of Gi+1 for 1 ≤ i ≤ k − 1. The ascending Ramsey index ARc(G) of G
with respect to c is the maximum length of an ascending Ramsey sequence
in G with respect to c. The ascending t-Ramsey index ARt(G) of G is the
minimum value of ARc(G) among all t-edge colorings c of G. With the aid
of results on partitions of sets, the exact value of ARt(G) is determined
when G is a star or a matching for every integer t ≥ 2. Additional results
on this topic are presented and some problems in this area are stated.

1 Introduction

More than 35 years ago, a concept and a conjecture were introduced in [1]
that has drawn the attention of researchers in graph theory. Let G be a
nonempty graph of size m. Thus,

(
k+1
2

)
≤ m <

(
k+2
2

)
for some positive

integer k. The graph G is said to have an ascending subgraph decompo-
sition {G1, G2, . . ., Gk} of k pairwise edge-disjoint subgraphs of G if Gi

is isomorphic to a proper subgraph of Gi+1 for i = 1, 2, . . . , k − 1. The
following conjecture was stated.

The Ascending Subgraph Decomposition Conjecture.
Every graph has an ascending subgraph decomposition.
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When the famous mathematician Paul Erdős became aware of this conjec-
ture, he immediately doubted its truth and offered $5 for a counterexample
or a proof if it turned out to be true. No proof or disproof of this con-
jecture has ever been given. If the conjecture was shown to be false, then
the question occurred of determining the maximum length ℓ of a sequence
G1, G2, . . ., Gℓ of ℓ pairwise edge-disjoint subgraphs of G such that Gi has
size i for 1 ≤ i ≤ ℓ and Gi is isomorphic to a proper subgraph of Gi+1

for i = 1, 2, . . . , ℓ − 1. This conjecture has been verified for several classes
of graphs (see [4, 5, 6, 7, 8, 9], for example). In particular, it is easy to
see that a star or matching of size m, where

(
k+1
2

)
≤ m <

(
k+2
2

)
, has an

ascending subgraph decomposition (into k subgraphs).

While a typical graph theory problem in Ramsey theory deals with deter-
mining for given graphs G1, G2, . . . , Gk (often k = 2) whether an arbitrary
edge coloring of some graphH (often a complete graph) with a fixed number
(often two) of colors always results in a monochromatic subgraph isomor-
phic to some Gi (1 ≤ i ≤ k), we investigate a Ramsey-type concept here
inspired by ascending subgraph decompositions.

Let G be a graph (without isolated vertices) of size m with a red-blue
edge coloring c. An ascending Ramsey sequence of G with respect to c is
a sequence G1, G2, . . ., Gk of pairwise edge-disjoint subgraphs of G such
that each subgraph Gi (1 ≤ i ≤ k) is monochromatic and Gi is isomorphic
to a proper subgraph of Gi+1 for 1 ≤ i ≤ k−1. The maximum length of an
ascending Ramsey sequence of G with respect to c is the ascending Ramsey
index ARc(G) of G. The ascending Ramsey index AR(G) of G is

AR(G) = min{ARc(G) : c is a red-blue edge coloring of G}.

These concepts were introduced in [2, 3]. Among the results presented in [2,
3] is a characterization of all stars and matchings G for which AR(G) = k
for every integer k ≥ 2. In particular, the following result was obtained.

Theorem 1.1. [3] Let k ≥ 2 be an integer and let G be a star K1,m or a
matching mK2. Then AR(G) = k if and only if

(
k + 1

2

)
≤ m <

(
k + 2

2

)
.

This result shows that not only does a star or matching of size m have an
ascending subgraph decomposition but for every 2-edge coloring of these
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graphs, there is an ascending subgraph decomposition in which each sub-
graph is monochromatic.

A goal here is to generalize ascending Ramsey index from an edge coloring
employing two colors to an edge coloring with at least two colors resulting
in a multicolor ascending Ramsey index and determine its value when the
graph is a star or a matching. In Section 2, we introduce the concepts
of ascending subset sequence and index of a set and present results on
partitioning a given set with certain prescribed ascending properties. In
Section 3, we apply the results from Section 2 on set partitions to present
a characterization of those stars and matchings G for which ARt(G) = k
for all integers t ≥ 2 and k ≥ 2. A more general problem dealing with this
topic is also discussed in Section 3.

2 Ascending subset sequences

Prior to defining the multicolor ascending Ramsey index of a graph G and
then determining its value when G is a star or a matching, it is useful to
consider and solve a problem involving sets, which is perhaps an interesting
set theory problem in its own right.

For a finite set S with |S| = m ≥ 2 and a partition P =
{T1, T2, . . . , Tt} of S into t subsets (a t-partition of S) where
m ≥ t ≥ 2, what is the maximum number k of pairwise disjoint
subsets Si, 1 ≤ i ≤ k, of S such that (1) |Si| = i for 1 ≤ i ≤ k
and (2) for every integer i with 1 ≤ i ≤ k, there exists an
integer j with 1 ≤ j ≤ t for which Si ⊆ Tj?

For a set S with |S| = m ≥ 2 and a partition P of S, a sequence S1, S2, . . .,
Sk of k pairwise disjoint subsets of S that satisfies (1) and (2) is called an
ascending subset sequence of S with respect to P and the maximum length
of an ascending subset sequence of S with respect to P is the ascending
subset index ARP(S) of S with respect to P. For an integer t ≥ 2, the
ascending subset index ARt(S) of S is defined by

ARt(S) = min{ARP(S) : P is a t-partition of S}.
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Thus, if S is a set with ARt(S) = k ≥ 2, then

|S| ≥ max

{
t,

(
k + 1

2

)}
. (1)

The following lemma will be particularly useful in what follows.

Lemma 2.1. Let t and k be integers with t ≥ 2 and k ≥ 2 and let S and S∗

be sets such that t ≤ |S| < |S∗|. If there exists an ascending subset sequence
of length k for every t-partition of S, then there is an ascending subset
sequence of length k for every t-partition of S∗. Consequently, ARt(S) ≤
ARt(S

∗).

Proof. Using a one-to-one mapping from the set S to S∗ if necessary, we
may assume that S ⊆ S∗. Let P∗= {T ∗

1 , T
∗
2 , . . ., T

∗
t } be a t-partition of S∗

where t ≤ |S| < |S∗|. Thus, |S∗| =∑t
i=1 |T ∗

i |. Since t ≤ |S| < |S∗|, there is
a t-partition P = {T1, T2, . . . , Tt} of S such that Ti ⊆ T ∗

i for i = 1, 2, . . . , t.
By assumption, there is an ascending subset sequence S1, S2, . . ., Sk of S
such that |Si| = i for 1 ≤ i ≤ k and for every integer i with 1 ≤ i ≤ k,
Si ⊆ Tj for some integer j with 1 ≤ j ≤ t. Since Tj ⊆ T ∗

j for j = 1, 2, . . . , t,
it follows that S1, S2, . . ., Sk is also an ascending subset sequence of S∗

with respect to P∗.

If S is a set such that ARt(S) = k for integers t ≥ 2 and k ≥ 2, then a
question of interest here concerns what can be said about |S|. A related
question deals with determining whether it is possible for ARt(S) = k when
given information on the value of |S| in terms of t and k. In order to provide
answers to these questions, we consider the two possibilities where either
t > k ≥ 2 or k ≥ t ≥ 2. We begin with the situation where t > k ≥ 2.

Theorem 2.2. Let S be a set with ARt(S) ≥ k ≥ 2 where t ≥ 2.

If t > k, then |S| ≥ (k − 1)(t− 1) + k.

Proof. Suppose that t > k. We show that if S is a set with |S| < (k−1)(t−
1) + k, then ARt(S) < k, namely, there is a t-partition P of S such that
there exists no ascending subset sequence of length k in S with respect to P.
By Lemma 2.1, we may assume that |S| = [(k−1)(t−1)+k]−1 = t(k−1).
Let P = {T1, T2, . . . , Tt} be a t-partition of S such that |Ti| = k − 1 for
1 ≤ i ≤ t. Then there is no ascending subset sequence S1, S2, . . . , Sk of
length k in S with respect to P since Sk is not a subset of Ti for any
integer i with 1 ≤ i ≤ t. Consequently, there exists no ascending subset
sequence of length k in S with respect to P and so ARt(S) < k.
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In order to establish the next result, we first present the following lemma.

Lemma 2.3. For integers t, k, and j with t > k ≥ 2 and 0 ≤ j ≤ k,

1

t

[
kt+ 1−

(
k + 2

2

)
+

(
k + 2− j

2

)]
> k − j. (2)

Proof. Since 2j(t− k) + (j − 1)(j − 2) > 0 when j ≥ 0 and t > k, it follows
that

kt+ 1−
(
k + 2

2

)
+

(
k + 2− j

2

)

= kt+ 1− (k + 2)(k + 1)

2
+

(k + 2− j)(k + 1− j)

2
> kt− jk

and so (2) holds.

Theorem 2.4. Let t and k be integers with t > k ≥ 2. If S is a set with
ARt(S) = k, then

(k − 1)(t− 1) + k ≤ |S| ≤ kt.

Proof. Since ARt(S) = k < t, it follows that |S| ≥ (k − 1)(t − 1) + k by
Theorem 2.2. It remains therefore to show that |S| ≤ kt. Assume, to the
contrary, that there is a set S with ARt(S) = k < t such that |S| ≥ kt+ 1.
We show that for every t-partition P = {T1, T2, . . . , Tt} of S, there exists
an ascending subset sequence of length k + 1 with respect to P, that is, a
sequence S1, S2, . . ., Sk+1 of k+1 pairwise disjoint subsets of S such that (1)
|Si| = i for 1 ≤ i ≤ k+1 and (2) for every integer i with 1 ≤ i ≤ k+1, there
exists an integer j with 1 ≤ j ≤ t for which Si ⊆ Tj . This, however, implies
that ARt(S) ≥ k + 1, which contradicts the assumption that ARt(S) = k.

By Lemma 2.1, we may assume that |S| = kt+1. Let P = {T1, T2, . . . , Tt}
be a t-partition of S. Since 1

t (kt+ 1) > k, it follows that at least one
of the subsets T1, T2, . . . , Tt contains a (k + 1)-element subset Sk+1, say
Sk+1 ⊆ Ti1 where 1 ≤ i1 ≤ t. For i = 1, 2, . . . , t, where i ̸= i1, let

T
(1)
i = Ti and let T

(1)
i1

= Ti1 − Sk+1 (where T
(1)
i1

may be empty). Then

P(1) =
{
T

(1)
1 , T

(1)
2 , . . . , T

(1)
t

}
is a collection of t pairwise disjoint subsets of

the set S(1) = S − Sk+1, whose union is S(1). Observe that

|S(1)| = |S| − |Sk+1| = (kt+ 1)− (k + 1) = (kt+ 1)−
(
k + 2

2

)
+

(
k + 1

2

)
.
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Since
1

t

[
kt+ 1−

(
k + 2

2

)
+

(
k + 1

2

)]
> k − 1,

by Lemma 2.3, at least one of the subsets T
(1)
1 , T

(1)
2 , . . . , T

(1)
t contains a

k-element subset Sk, say Sk ⊆ Ti2 where 1 ≤ i2 ≤ t. For i = 1, 2, . . . , t

where i ̸= i2, let T
(2)
i = T

(1)
i and let T

(2)
i2

= T
(1)
i2

− Sk (where T
(2)
i2

may

be empty). Then P(2) =
{
T

(2)
1 , T

(2)
2 , . . . , T

(2)
t

}
is a collection of t pairwise

disjoint subsets of the set S(2) = S(1) − Sk, whose union is S(2). Observe
that

|S(2)| = |S(1)| − |Sk| =
[
(kt+ 1)−

(
k + 2

2

)
+

(
k + 1

2

)]
− k

= (kt+ 1)−
(
k + 2

2

)
+

[(
k + 1

2

)
− k

]

= (kt+ 1)−
(
k + 2

2

)
+

(
k

2

)
.

Repeating this procedure recursively, we obtain a sequence P(1), P(2), . . .,

P(k) where P(j) =
{
T

(j)
1 , T

(j)
2 , . . . , T

(j)
t

}
is a collection of t pairwise disjoint

subsets of the set S(j) = S(j−1)−Sk+2−j , whose union is S(j) for 1 ≤ j ≤ k
and S(0) = S. For each integer j with 1 ≤ j ≤ k, observe that

|S(j)| = |S(j−1)| − |Sk+2−j |

=

[
(kt+ 1)−

(
k + 2

2

)
+

(
k + 2− (j − 1)

2

)]
− (k + 2− j)

=

[
(kt+ 1)−

(
k + 2

2

)
+

(
k + 1− j

2

)]
− (k + 2− j)

= (kt+ 1)−
(
k + 2

2

)
+

(
k + 2− j

2

)
.

By Lemma 2.3, for 1 ≤ j ≤ k,

1

t

[
(kt+ 1) +

(
k + 2

2

)
+

(
k + 2− j

2

)]
> k − j

and so at least one of the subsets T
(j)
1 , T

(j)
2 , . . . , T

(j)
t contains a (k− j+1)-

element subset Sk−j+1. By the construction of the sequence P,P(1), P(2),
. . ., P(k), it follows that S1, S2, . . . , Sk+1 is an ascending subset sequence of
length k + 1 in S with respect to P, which implies that ARt(S) ≥ k + 1, a
contradiction.
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Notice that the proof of Theorem 2.4 shows the following.

If S is a set with |S| ≥ kt+ 1, where t > k ≥ 2, then ARt(S) ≥ k + 1. (3)

We now show that for integers t and k when t > k ≥ 2 that if S is a set

with |S| = (k − 1)(t− 1) + k, then ARt(S) ≥ k.

Theorem 2.5. Let t and k be integers with t > k ≥ 2.

If S is a set with |S| = (k − 1)(t− 1) + k, then ARt(S) ≥ k.

Proof. Let S be a set with |S| = (k−1)(t−1)+k and let P = {T1, T2, . . . , Tt}
be a t-partition of S. We show that there exists an ascending subset se-
quence of length k in S with respect to P, that is, a sequence S1, S2, . . .,
Sk of k pairwise disjoint subsets of S such that (1) |Si| = i for 1 ≤ i ≤ k
and (2) for every integer i with 1 ≤ i ≤ k, there exists an integer j with
1 ≤ j ≤ t for which Si ⊆ Tj . Since

1

t
[(k − 1)(t− 1) + k] > k − 1,

at least one of the subsets T1, T2, . . . , Tt contains a k-element subset Sk.
Suppose that Sk ⊆ Ti1 where 1 ≤ i1 ≤ t. For i = 1, 2, . . . , t where i ̸= i1,

let T
(1)
i = Ti and let T

(1)
i1

= Ti1 − Sk (where T
(1)
i1

may be empty). Then

P(1) =
{
T

(1)
1 , T

(1)
2 , . . . , T

(1)
t

}
is a collection of t pairwise disjoint subsets of

the set S(1) = S − Sk, whose union is S(1). Since t − 1 > k − 1, it follows
that

|S(1)| = |S| − |Sk| = [(k − 1)(t− 1) + k]− k

= (k − 1)(t− 1) = (k − 2)(t− 1) + (t− 1)

> (k − 2)(t− 1) + (k − 1).

Since
1

t
[(k − 2)(t− 1) + (k − 1)] > k − 2,

at least one of the subsets T
(1)
1 , T

(1)
2 , . . . , T

(1)
t contains a (k − 1)-element

subset Sk−1. Suppose that Sk−1 ⊆ T
(1)
i2

where 1 ≤ i2 ≤ t. For i = 1, 2, . . . , t

where i ̸= i2, let T
(2)
i = T

(1)
i = and let T

(2)
i2

= T
(1)
i2

−Sk−1 (where T
(2)
i2

may
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be empty). Then P(2) =
{
T

(2)
1 , T

(2)
2 , . . . , T

(2)
t

}
is a collection of t pairwise

disjoint subsets of the set S(2) = S(1) − Sk−1, whose union is S(2). Since

|S(1)| > (k − 2)(t− 1) + (k − 1)

and t− 1 > k − 1 > k − 2, it follows that

|S(2)| = |S(1)| − |Sk−1| > [(k − 2)(t− 1) + (k − 1)]− (k − 1)

= (k − 2)(t− 1) = (k − 3)(t− 1) + (t− 1)

> (k − 3)(t− 1) + (k − 2).

Repeating this procedure recursively, we obtain a sequence P(1), P(2), . . .,

P(k−1) where P(j) =
{
T

(j)
1 , T

(j)
2 , . . . , T

(j)
t

}
is a collection of t pairwise dis-

joint subsets of S(j) = S(j−1) − Sk−j+1, whose union is S(j) for 1 ≤ j ≤ k
and S(0) = S. For each integer j with 1 ≤ j ≤ k − 1, since

|S(j−1)| ≥ (k − j)(t− 1) + (k − j + 1)

and t− 1 > k − 1 ≥ k − j, it follows that

|S(j)| = |S(j−1)| − |Sk−j+1|

≥ [(k − j)(t− 1) + (k − j + 1)]− (k − j + 1)

= (k − j)(t− 1) = (k − j − 1)(t− 1) + (t− 1)

> (k − j − 1)(t− 1) + (k − j).

Since
1

t
[(k − j − 1)(t− 1) + (k − j)] > k − j − 1

for 1 ≤ j ≤ k − 1, at least one of the subsets T
(j)
1 , T

(j)
2 , . . . , T

(j)
t contains a

(k − j)-element subset Sk−j . By the construction of the sequence P,P(1),
P(2), . . ., P(k−1), it follows that S1, S2, . . . , Sk is an ascending subset se-
quence of length k in S with respect to P. Therefore, ARt(S) ≥ k.

We saw in (3) that if t and k are integers with t > k ≥ 2 and S is a set with
|S| ≥ kt + 1, then ARt(S) ≥ k + 1. Hence, the following is a consequence
of Lemma 2.1 and Theorem 2.5.
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Corollary 2.6. Let t and k be integers with t > k ≥ 2. If S is a set with

(k − 1)(t− 1) + k ≤ |S| ≤ kt,

then ARt(S) ≥ k.

We are now able to present a necessary and sufficient condition on the size
of a set S for which ARt(S) = k when t > k ≥ 2.

Theorem 2.7. Let t and k be integers with t > k ≥ 2. Then ARt(S) = k
for a set S if and only if

(k − 1)(t− 1) + k ≤ |S| ≤ kt.

Proof. By Theorem 2.4, if ARt(S) = k, then (k−1)(t−1)+k ≤ |S| ≤ kt. For
the converse, suppose that S is a set such that (k−1)(t−1)+k ≤ |S| ≤ kt.
By Corollary 2.6, ARt(S) ≥ k. It remains to show that ARt(S) ≤ k. By
Lemma 2.1, we may assume that |S| = kt. Let P = {T1, T2, . . . , Tt} be
a t-partition of S such that |Ti| = k for 1 ≤ i ≤ t. Then there exists no
ascending subset sequence of length k + 1 in S with respect to P. Hence,
ARt(S) ≤ k and so ARt(S) = k.

Next, we consider the situation where k ≥ t ≥ 2. First, we present a lower
bound for the size of a set S having ARt(S) ≥ k where k ≥ t ≥ 2.

Theorem 2.8. Let S be a set with ARt(S) ≥ k ≥ 2 where t ≥ 2.

If k ≥ t, then |S| ≥
(
k+1
2

)
+
(
t−1
2

)
.

Proof. Let k ≥ t. We show that if S is a set with |S| <
(
k+1
2

)
+
(
t−1
2

)
,

then there is a t-partition P of S such that there exists no ascending subset
sequence of length k in S with respect to P. By Lemma 2.1, we may assume
that |S| =

(
k+1
2

)
+
(
t−1
2

)
−1. Since (t−1)2 =

(
t
2

)
+
(
t−1
2

)
and

(
t
2

)
<
(
k+1
2

)
−1

when 2 ≤ t ≤ k, it follows that

(t− 1)2 =

(
t

2

)
+

(
t− 1

2

)
<

(
k + 1

2

)
+

(
t− 1

2

)
− 1 = |S|.

Let P = {T1, T2, . . . , Tt} be a t-partition of S such that |Ti| = t − 1 for
1 ≤ i ≤ t−1. Thus, |Tt| = |S|− (t−1)2 > 0. Assume, to the contrary, that
there exists an ascending subset sequence S1, S2, . . . , Sk of length k in S
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with respect to P. Since t− 1 ≤ k− 1, it follows that Si ⊆ Tt for t ≤ i ≤ k.
Hence,

|Tt| ≥
k∑

i=t

|Si| =
k∑

i=t

i =

k∑

i=1

i−
t−1∑

i=1

i =

(
k + 1

2

)
−
(
t

2

)
.

Therefore,

|S| =
(

t−1∑

i=1

|Ti|
)
+ |Tt| ≥ (t− 1)2 +

(
k + 1

2

)
−
(
t

2

)
=

(
k + 1

2

)
+

(
t− 1

2

)
.

This contradicts the assumption that |S| =
(
k+1
2

)
+
(
t−1
2

)
− 1.

Prior to presenting the next result, we establish the following lemma, which
will be useful.

Lemma 2.9. Let t ≥ 2 be an integer. For each positive integer j,

1

t

[(
j + 1

2

)
+

(
t− 1

2

)]
> j − 1. (4)

Proof. First, observe that for every two integers t ≥ 2 and j ≥ 1, it follows
that [

(j − t) +
1

2

]2
+

7

4
> 0.

Thus, (j − t)2 + (j − t) + 2 > 0 and so

(j2 + j) + (t2 − 3t+ 2) > 2t(j − 1).

Therefore,
(
j+1
2

)
+
(
t−1
2

)
> t(j − 1), giving the desired inequality.

Theorem 2.10. Let t and k be integers with k ≥ t ≥ 2. If S is a set with

|S| =
(
k + 1

2

)
+

(
t− 1

2

)
,

then ARt(S) ≥ k.

Proof. Let S be a set with |S| =
(
k+1
2

)
+
(
t−1
2

)
and let P = {T1, T2, . . . , Tt}

be a t-partition of S. We show that there exists an ascending subset se-
quence of length k in S with respect to P, that is, there is a sequence S1, S2,
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. . ., Sk of k pairwise disjoint subsets of S such that (1) |Si| = i for 1 ≤ i ≤ k
and (2) for every integer i with 1 ≤ i ≤ k, there exists an integer j with
1 ≤ j ≤ t for which Si ⊆ Tj . Since

1

t

[(
k + 1

2

)
+

(
t− 1

2

)]
> k − 1

by Lemma 2.9, it follows that at least one of the subsets Ti (1 ≤ i ≤ t)
contains a k-element subset Sk. Suppose that Sk ⊆ Ti1 , where 1 ≤ i1 ≤ t.

Let S(1) = S − Sk. For i = 1, 2, . . . , t where i ̸= i1, let T
(1)
i = Ti and let

T
(1)
i1

= Ti1 − Sk (where T
(1)
i1

may be empty). Then
⋃t

i=1 T
(1)
i = S(1) and

P(1) =
{
T

(1)
1 , T

(1)
2 , . . . , T

(1)
t

}
is a collection of t pairwise disjoint subsets

of S(1). Observe that

|S(1)| = |S| − |Sk| =
[(

k + 1

2

)
+

(
t− 1

2

)]
− k =

(
k

2

)
+

(
t− 1

2

)
.

Since
1

t

[(
(k − 1) + 1

2

)
+

(
t− 1

2

)]
> k − 2

by Lemma 2.9, it follows that at least one of the subsets P(1) contains a
(k−1)-element subset Sk−1. Suppose that Sk−1 ⊆ Ti2 where 1 ≤ i2 ≤ t. For

i = 1, 2, . . . , t where i ̸= i2, let T
(2)
i = T

(1)
i and let T

(2)
i2

= T
(1)
i2

−Sk−1 (where

T
(2)
i2

may be empty). Repeating this procedure recursively, we obtain a

sequence P(1), P(2), . . ., P(k−1) where P(j) =
{
T

(j)
1 , T

(j)
2 , . . . , T

(j)
t

}
is a

collection of t pairwise disjoint subsets of the set S(j) = S(j−1) − Sk−j+1,

where
⋃t

i=1 T
(j)
i = Sj for 1 ≤ j ≤ k − 1 and S(0) = S. For each integer j

with 1 ≤ j ≤ k − 1, observe that

|S(j)| = |S(j−1)| − |Sk−j+1|

=

[(
(k − j + 1) + 1

2

)
+

(
t− 1

2

)]
− (k − j + 1)

=

(
(k − j) + 1

2

)
+

(
t− 1

2

)
.

Since
1

t

[(
(k − j) + 1

2

)
+

(
t− 1

2

)]
> k − j − 1

by Lemma 2.9, it follows that at least one of the subsets T
(j)
1 , T

(j)
2 , . . . , T

(j)
t

contains a (k − j)-element subset Sk−j . By the construction of the se-
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quence P,P(1), P(2), . . ., P(k−1), it follows that S1, S2, . . . , Sk is an as-
cending subset sequence of length k in S with respect to P. Therefore,
ARt(S) ≥ k.

The following is a consequence of Lemma 2.1 and Theorem 2.10.

Corollary 2.11. Let t and k be integers with k ≥ t ≥ 2. If S is a set with
(
k + 1

2

)
+

(
t− 1

2

)
≤ |S| ≤

(
k + 2

2

)
+

(
t− 1

2

)
− 1,

then ARt(S) ≥ k.

We now have the following result.

Theorem 2.12. Let t and k be integers with k ≥ t ≥ 2. If ARt(S) = k,
then (

k + 1

2

)
+

(
t− 1

2

)
≤ |S| ≤

(
k + 2

2

)
+

(
t− 1

2

)
− 1.

Proof. Let S be a set with ARt(S) = k ≥ t. By Theorem 2.8, it follows
that |S| ≥

(
k+1
2

)
+
(
t−1
2

)
. It remains to establish the upper bound for |S|.

Since k + 1 > t, it follows from Corollary 2.11 that if |S| ≥
(
k+2
2

)
+
(
t−1
2

)
,

then ARt(S) ≥ k + 1. Hence, if ARt(S) ≤ k, then |S| ≤
(
k+2
2

)
+
(
t−1
2

)
− 1.

In particular, if ARt(S) = k, then |S| ≤
(
k+2
2

)
+
(
t−1
2

)
− 1.

We are now able to present a necessary and sufficient condition on the size
of a set S for which ARt(S) = k when k ≥ t ≥ 2.

Theorem 2.13. Let t and k be integers with k ≥ t ≥ 2. Then ARt(S) = k
for a set S if and only if

(
k + 1

2

)
+

(
t− 1

2

)
≤ |S| ≤

(
k + 2

2

)
+

(
t− 1

2

)
− 1.

Proof. By Theorem 2.12, if ARt(S) = k, then
(
k + 1

2

)
+

(
t− 1

2

)
≤ |S| ≤

(
k + 2

2

)
+

(
t− 1

2

)
− 1. (5)

For the converse, suppose that S is a set such that (5) holds. By Corol-
lary 2.11, ARt(S)≥k. It remains to show that ARt(S) ≤ k. By Lemma 2.1,
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we may assume that |S| =
(
k+2
2

)
+
(
t−1
2

)
− 1 and show that there is a t-

partition P of S such that there exists no ascending subset sequence of
length k + 1 in S with respect to P. Since (t − 1)2 =

(
t
2

)
+
(
t−1
2

)
and(

t
2

)
<
(
k+1
2

)
− 1 <

(
k+2
2

)
− 1 when 2 ≤ t ≤ k, it follows that

(t− 1)2 =

(
t

2

)
+

(
t− 1

2

)

<

(
k + 1

2

)
+

(
t− 1

2

)
− 1

<

(
k + 2

2

)
+

(
t− 1

2

)
− 1

= |S|.

Let P = {T1, T2, . . . , Tt} be a t-partition of S such that |Ti| = t − 1 for
1 ≤ i ≤ t−1. Thus, |Tt| = |S|− (t−1)2 > 0. Assume, to the contrary, that
there exists an ascending subset sequence S1, S2, . . . , Sk+1 of length k + 1
in S with respect to P. Since t − 1 ≤ k − 1, it follows that Si ⊆ Tt for
t ≤ i ≤ k + 1. Hence,

|Tt| ≥
k+1∑

i=t

|Si| =
k+1∑

i=t

i =

k+1∑

i=1

i−
t−1∑

i=1

i =

(
k + 2

2

)
−
(
t

2

)
.

Therefore,

|S| =
(

t−1∑

i=1

|Ti|
)
+ |Tt| ≥ (t− 1)2 +

(
k + 2

2

)
−
(
t

2

)
=

(
k + 1

2

)
+

(
t− 1

2

)
.

This contradicts the assumption that |S| =
(
k+2
2

)
+
(
t−1
2

)
− 1.

3 The multicolor ascending Ramsey index of
a graph

We now return to our primary topic. For positive integers m and t with
m ≥ t, let G be a graph (without isolated vertices) with m edges each of
which is assigned one of t colors, where each color is assigned to at least
one edge. For such a t-edge coloring c of G, an ascending Ramsey sequence
in G with respect to c is a sequence G1, G2, . . ., Gk of pairwise edge-disjoint
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subgraphs (without isolated vertices) of G such that (1) each subgraph Gi

(1 ≤ i ≤ k) is monochromatic and (2) Gi is isomorphic to a proper subgraph
of Gi+1 for 1 ≤ i ≤ k − 1. The ascending Ramsey index ARc(G) of G with
respect to c is the maximum length of an ascending Ramsey sequence in G
with respect to c. Thus, if ARc(G) = k, then there exists an ascending
Ramsey sequence G1, G2, . . ., Gk of k subgraphs of G with respect to c
where |E(Gi)| = i for 1 ≤ i ≤ k. The ascending t-Ramsey index ARt(G)
of G is defined by

ARt(G) = min{ARc(G) : c is a t-edge coloring of G}.

If t = 1, then AR1(G) returns us to the Ascending Subgraph Decomposition
Conjecture of a graph G. Thus, if G is a graph of size m with ARt(G) =
k ≥ 2, then

m ≥ max

{
t ,

(
k + 1

2

)}
.

The goal here is to determine for each pair k, t of integers with k ≥ 2 and
t ≥ 2 all those integers m ≥ max{t,

(
k+1
2

)
} for which ARt(G) = k when

G = K1,m is a star of size m or when G = mK2 is a matching of size m.
We saw that this question was answered in [3] when t = 2, where then
AR2(G) = AR(G). If G = K1,m or G = mK2 and S = E(G) and S′ is a
nonempty subset of S where 1 ≤ |S′| = i ≤ m, then the subgraph G[S′] of
G induced by the set S′ of the edges of G is the star K1,i if G = K1,m or
the matching iK2 if G = mK2. Consequently, the results of Theorems 2.7
and 2.13 obtained in Section 2 give us an immediate answer.

Corollary 3.1. Let t and k be integers with 2 ≤ k < t and let G = K1,m

or G = mK2 where m ≥ max{t,
(
k+1
2

)
}. Then ARt(G) = k if and only if

(k − 1)(t− 1) + k ≤ m ≤ kt.

Corollary 3.2. Let t and k be integers with k ≥ t ≥ 2 and let G = K1,m

or G = mK2 where m ≥ max{t,
(
k+1
2

)
}. Then ARt(G) = k if and only if

(
k + 1

2

)
+

(
t− 1

2

)
≤ m ≤

(
k + 2

2

)
+

(
t− 1

2

)
− 1.

As a consequence of Corollaries 3.1 and 3.2, we have the following. For a
real number x, let ⌈x⌉ denote the ceiling of x.

Corollary 3.3. Let t ≥ 2 and m ≥ t be integers and let G ∈ {K1,m,mK2}.
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(a) If m ≤ t(t − 1), then ARt(G) = k where k is the unique positive
integer such that (k − 1)(t− 1) + k ≤ m ≤ kt. Thus,

ARt(G) =
⌈m
t

⌉
.

(b) If m > t(t − 1), then ARt(G) = k where k is the unique positive
integer such that

(
k+1
2

)
+
(
t−1
2

)
≤ m ≤

(
k+2
2

)
+
(
t−1
2

)
− 1. Thus,

ARt(G) =

⌈
−3 +

√
8m+ 12t− 4t2 + 1

2

⌉
.

Proof. Let ARt(G) = k. Then k < t or k ≥ t. If k < t, then m ≤
kt ≤ t(t − 1) by Corollary 3.1; while if k ≥ t, then m ≥

(
k+1
2

)
+
(
t−1
2

)
≥(

t+1
2

)
+
(
t−1
2

)
> t(t − 1) by Corollary 3.2. Therefore, if m ≤ t(t − 1), then

k < t and Corollary 3.1 applies. We show k =
⌈
m
t

⌉
. First, since m ≤ kt, it

follows that k ≥ m
t . Next, since m ≥ (k − 1)(t− 1) + k, it follows that

m

t
≥ (k − 1)(t− 1) + k

t
= k − 1 +

1

t
.

Thus, k ≤ m
t + 1− 1

t < m
t + 1. Hence, ARt(G) =

⌈
m
t

⌉
and so (a) holds.

On the other hand, if m > t(t − 1), then k ≥ t and Corollary 3.2 applies.
We show that

k =

⌈
−3 +

√
8m+ 12t− 4t2 + 1

2

⌉
.

First, since m ≤
(
k+2
2

)
+
(
t−1
2

)
− 1, it follows that

8m ≤ (4k2 + 12k + 8) + (4t2 − 12t+ 8)− 8.

Thus,
(2k + 3)2 = 4k2 + 12k + 9 ≥ 8m+ 12t− 4t2 + 1

and so
2k + 3 ≥

√
8m+ 12t− 4t2 + 1.

Here, observe that 8m + 12t − 4t2 + 1 ≥ 0 as m > t(t − 1) so that we are
taking the square root of a non-negative number. Hence,

k ≥ −3 +
√
8m+ 12t− 4t2 + 1

2
.
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Next, since m ≥
(
k+1
2

)
+
(
t−1
2

)
, it follows that

m >

(
k + 1

2

)
+

(
t− 1

2

)
− 1 =

k2 + k + t2 − 3t

2
.

Thus,
8m > 4k2 + 4k + 4t2 − 12t

and so
(2k + 1)2 = 4k2 + 4k + 1 < 8m+ 12t− 4t2 + 1.

Therefore, 2k + 1 <
√
8m+ 12t− 4t2 + 1 and so

k <
−1 +

√
8m+ 12t− 4t2 + 1

2
=

−3 +
√
8m+ 12t− 4t2 + 1

2
+ 1.

Hence, ARt(G) =

⌈
−3 +

√
8m+ 12t− 4t2 + 1

2

⌉
and so (b) holds.

To illustrate Corollary 3.3, we determine ARt(G) where G ∈ {K1,20, 20K2}
for t = 5 and t = 3. Here, m = 20. First, let t = 5. Since 20 ≤ 5(5−1) = 20,
it follows by Corollary 3.3(a) that AR5(G) = k where k is the unique
positive integer such that 5k − 4 ≤ 20 ≤ 5k. Hence, k =

⌈
20
5

⌉
= 4 and

so AR5(G) = 4. Next, let t = 3. Since 20 > 3(3 − 1) = 6, it follows by
Corollary 3.3(b) that AR3(G) = k where k is the unique positive integer
such that

(
k+1
2

)
+ 1 ≤ 20 ≤

(
k+2
2

)
. Hence,

k =

⌈
−3 +

√
8 · 20 + 12 · 3− 4 · 32 + 1

2

⌉
= 5

and so AR3(G) = 5.

While the primary question here is that of determining ARt(G) for a
graph G of size m and a positive integer t, there are other questions of
a general nature, including the following.

For integers t and k where t, k ≥ 2, what is the maximum size
of a graph G for which ARt(G) = k?

As an illustration of this, we answer this question for t = 3 when k = 2
and k = 3. By Corollaries 3.1 and 3.2, if G = K1,m or G = mK2, then
(1) AR3(G) = 2 if and only if 4 ≤ m ≤ 6, (2) AR3(G) = 3 if and only

Ascending Ramsey sequences in graphs

88



if 7 ≤ m ≤ 10, and (3) AR3(G) = 4 if and only if 11 ≤ m ≤ 15. This,
however, is not true in general. In fact, the maximum size of a graph G
for which AR3(G) = 2 is 9 and the maximum size of a graph G for which
AR3(G) = 3 is 18. In order to verify these facts, we first present the
following result.

Proposition 3.4. Let t ≥ 2 be an integer. If every graph G of size m has
ARt(G) ≥ k, then every graph H of size greater than m has ARt(H) ≥ k.

Proof. Let c be an arbitrary t-edge coloring of a graph H of size greater
thanm that results in tmonochromatic (nonempty) graphsH1, H2, . . ., Ht,
where every edge of Hi is colored i for i = 1, 2, 3, . . . , t. For 1 ≤ i ≤ t, let
Xi ⊆ E(Hi) be a nonempty set such that

∑t
i=1 |Xi| = m. Let X = ∪t

i=1Xi

and let G = H[X] be the subgraph in H induced by X. We define a t-
coloring c′ of G by c′(e) = c(e) for each e ∈ X. Since ARt(G) ≥ k by the
assumption, there is an ascending Ramsey sequence of length k in G with
respect to c′. Hence, there is an ascending Ramsey sequence of length k in
H with respect to c. Therefore, ARt(H) ≥ k.

It is well known that all graphs of small size possess an ascending subgraph
decomposition (for example, all graphs of size less than 15). We will use this
fact in the subsequent discussion. For two vertex-disjoint graphs F and G,
let F + G denote the union of F and G with V (F + G) = V (F ) ∪ V (G)
and E(F + G) = E(F ) ∪ E(G). For an integer n ≥ 2, let Pn denote the
path of order n and size n − 1. For an integer k ≥ 2, let Mk denote the
maximum size of a graph G for which AR3(G) = k. We are now prepared
to determine Mk when k = 2 and k = 3.

Theorem 3.5. M2 = 9 and M3 = 18.

Proof. We begin by verifying that M2 = 9. First, we show that there
are graphs of size 9 having ascending 3-Ramsey index 2. For example, let
G = 5K2 + K1,4 and let c : E(G) → [3] be a 3-edge coloring of G that
results in three monochromatic graphs K2, 4K2 and K1,4 whose edges are
colored 1, 2, 3, respectively. Then there is no ascending Ramsey sequence
of length 3 in G. Thus, AR3(G) ≤ 2 and so AR3(G) = 2.

Next, we show that every graph of size 10 or more has ascending 3-Ramsey
index at least 3. By Proposition 3.4, it suffices to show that every graph of
size 10 has ascending 3-Ramsey index at least 3. Let H be a graph of size 10
and let c be a 3-edge coloring of H using the colors in [3]. We show that
there is an ascending Ramsey sequence of length 3 in H with respect to c.
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For 1 ≤ i ≤ 3, let Hi be the (nonempty) subgraph of size mi induced by the
set of the edges colored i in H. We may assume that 1 ≤ m1 ≤ m2 ≤ m3

and so 4 ≤ m3 ≤ 8. If m3 ≥ 6, then H3 has an ascending subgraph
decomposition. Thus, H3 and H as well has an ascending Ramsey sequence
of length 3. Thus, we may assume that m3 = 5 or m3 = 4.

First, suppose that m3 = 5. If H3 is a star or a matching, then H3 can be
decomposed into K1,3 and K1,2 or 3K2 and 2K2, respectively, and so there
is an ascending Ramsey sequence of length 3 in H. If H3 is neither a star
nor a matching, then it is easy to see that H3 can be decomposed into two
subgraphs A and B where A ∈ {P4, P3 + K1} and B ∈ {P3, 2K2}. Since
B ⊆ A for each choice of A and B, there is an ascending Ramsey sequence
of length 3 in H.

Next, suppose that that m3 = 4. Then (m2,m1) ∈ {(4, 2), (3, 3)}. First,
suppose that H3 = K1,4 is star. If P3 ⊆ H2 or P3 ⊆ H1, then there
is an ascending Ramsey sequence of length 3 in H. Thus, we may assume
that H2 and H1 are both matchings. Then either (H2, H1) = (4K2, 2K2) or
H2 = H1 = 3K2. In either case, there is also an ascending Ramsey sequence
of length 3 in H. Next, suppose that H3 = 4K2 is a matching. If 2K2 ⊆ H2

or 2K2 ⊆ H1, then there is an ascending Ramsey sequence of length 3
in H. Thus, we may assume that H2 and H1 are (i) both stars, (ii) both
are K3, or (iii) one is a star and the other is K3. In any case, the subgraph
H[E(H1)∪E(H2)] induced by E(H1)∪E(H2) contains edge-disjoint copies
of either a monochromatic K1,3 or K3 and a monochromatic P3, producing
an ascending Ramsey sequence of length 3 in H. Finally, suppose that H3

is neither a star nor a matching. Thus, either P4 ⊆ H3 or P3 +K2 ⊆ H3.
Since m2 ≥ 3, it follows that H2 contains either P3 or 2K2. In either case,
there is an ascending Ramsey sequence of length 3 in H.

Therefore, AR3(G) ≥ 3 for every graph G of size greater than 9 and so
M2 = 9.

Next, we verify that M3 = 18. First, we show that there are graphs of
size 18 having ascending 3-Ramsey index 3. For example, let G = 2K3 +
6K2 +K1,6 of size 18 and let c : E(G) → [3] be a 3-edge coloring of G that
results in three monochromatic graphs 2K3, 6K2, and K1,6, whose edges
are colored 1, 2, or 3, respectively. Since there is no ascending Ramsey
sequence of length 4 in G, it follows that AR3(G) ≤ 3. It can be shown
that for every 3-edge coloring c of G, there is an ascending Ramsey sequence
of length 3 with respect to c. Therefore, AR3(G) = 3 for G = 2K3+6K2+
K1,6.
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Next, we show that every graph of size 19 or more has ascending 3-Ramsey
index at least 4. By Proposition 3.4, we show that every graph of size 19
has ascending 3-Ramsey index at least 4. Let G be a graph of size 19 and
let c be a 3-edge coloring of G using the colors in [3]. We show that there
is an ascending Ramsey sequence of length 4 in G with respect to c. For
1 ≤ i ≤ 3, let Hi be the (nonempty) subgraph of size mi induced by the
set of the edges colored i in G. We may assume that 1 ≤ m1 ≤ m2 ≤ m3

and so 7 ≤ m3 ≤ 17. If m3 ≥ 10, then H3 has an ascending subgraph
decomposition and so there is an ascending Ramsey sequence of length 4
in G. Thus, we may assume that 7 ≤ m3 ≤ 9 and so m2 + m1 ≥ 10.
Hence, either m2 ≥ 7 or (m2,m1) ∈ {(6, 4), (5, 5)}. Let H ⊆ H3 be a
monochromatic subgraph of size 7 in G. Using a case-by-case analysis, the
following statement can be verified.

⋆ The graph H can be decomposed into two subgraphs F and F ′ where
|E(F )| = 4 and |E(F ′)| = 3 such that F ′ ⊆ F and F ′ ̸= K3.

With the aid of the statement in (⋆), we show next that there is an ascending
Ramsey sequence sc of length 4 in G. Suppose that H is decomposed
into two graphs F and F ′ where |E(F )| = 4 and |E(F ′)| = 3 such that
F ′ ⊆ F and F ′ ̸= K3. Hence, F ′ ∈ {K1,3, P4, P3 + K2, 3K2}. First,
suppose that F ′ = K1,3. If there is a monochromatic P3 in G − E(H),
then sc : K2, P3, F

′, F . If there is no a monochromatic P3 in G − E(H),
then H1 = m1K2 and H2 = m2K2. Since m2 ≥ m1 ≥ 4, it follows that
sc : K2, 2K2, 3K3, 4K2. Next, suppose that F ′ ∈ {P4, P3 + K2}. Since
m2 ≥ 5, it follows that 2K2 ⊆ H2. Because 2K2 ⊆ P4 and 2K2 ⊆ P3 +K2,
it follows that sc : K2, 2K2, F

′, F . Finally, suppose that F ′ = 3K2. If there
is a monochromatic 2K2 in G− E(H), then sc : K2, 2K2, F

′, F . If there is
no a monochromatic 2K2 in G−E(H), then H1 = K1,m1 and H2 = K1,m2 .
Hence, sc : K2, P3,K1,3,K1,4 is an ascending Ramsey sequence in G.

Therefore, AR3(G) ≥ 4 for every graph G of size greater than 18 and so
M3 = 18.
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