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Kings in products of digraphs

Morgan Norge, Peter LaBarr, Isabella Brooke Sanders and
Dewey Taylor∗

Abstract. A k-king in a digraph D is a vertex that can reach every other
vertex in D by a dipath of length at most k. Here, we investigate the exis-
tence of k-kings in products of digraphs. We show that for the Cartesian,
strong and lexicographic products, a king exists in the product if and only
if the kings exist in the factors. For the direct product, we show that the
kings exist in the factors if they exist in the product.

1 Introduction

A k-king in a digraph D is a vertex that can reach every other vertex in
D by a directed path (dipath) of length at most k. A king is a vertex that
is a k-king for some k. Kings have been studied extensively in the past,
especially in tournaments, i.e., digraphs in which every pair of distinct
vertices is joined by exactly one arc [12, 17, 15, 8, 9, 10, 14, 11]. Also,
[16] extended some of the results from tournaments to oriented graphs, i.e.,
digraphs with no symmetric pairs of directed arcs and without loops.

In this paper, we are primarily concerned with the kings in products of
digraphs [5]. There are many types of product graphs, but only four prod-
ucts (direct, Cartesian, strong, and lexicographic) are associative and have
the property that the canonical projections from the product to the factors
are homomorphisms [6]. Each product has a long history with numerous
applications [1, 2, 18, 4, 7]. Our main result characterizes the relationship
between the kings in the product and the kings in the factors.
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Theorem 1.1. Let D and D′ be digraphs. Then:

(1) (v, v′) is a l-king in the Cartesian product D□D′ if and only if v is
k-king in D and v′ is a k′-king in D′, where k + k′ = l.

(2) (v, v′) is a k-king in the strong product D⊠D′ if and only if v a k-king
in D and v′ is a k-king in D′.

(3) (v, v′) is a k-king in the lexicographic product D ◦D′ if and only if v
is k-king in D, and either (a) v′ is a k-king in D′ or (b) v lies on a
directed cycle of length at most k.

(4) If (v, v′) is a k-king in the direct product D ×D′, then v is a k-king
in D and v′ is a k-king in D′.

This theorem appears in [5], without proof, citing this paper as a preprint.

We note that the reverse implication for the direct product has been estab-
lished in [13]. The proof is long and quite elaborate.

Theorem 1.2 ([13]). (v, v′) is a king in D ×D′ if and only if v is a king
in D, v′ is a king in D′, and gcd(gD(v), gD′(v′)) = 1 where gD(v) is the
greatest common divisor of the lengths of all closed directed walks in D
containing the vertex v.

In the rest of the paper we first define the necessary notions and terminology
and then we prove Theorem 1.1.

2 Preliminaries

A digraph, or directed graph, is an ordered pair D = (V,A) where V is a
finite nonempty set of vertices and A is a set of ordered pairs of distinct
vertices in V called arcs. A (v, w)-diwalk is a sequence of vertices W =
vv1v2 . . . vk−1w such that vv1, vk−1w, and vivi+1 are arcs in D for each
1 ≤ i ≤ k − 1. The length of the above (v, w)-diwalk W is k. A (v, w)-
dipath is a (v, w)-diwalk in which no vertices or edges are repeated. A
dicycle is a closed dipath, that is, a (v, v)-dipath for some vertex v in D.
A king is a vertex that can reach every other vertex in D by a dipath. A
k-king is a vertex that can reach every other vertex in D by a dipath of
length at most k. In the example below, vertex a is a 3-king.

a b c d

e
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As discussed in [5], the four standard digraph products of D and D′ are
the Cartesian product D□D′, the direct product D×D′, the strong product
D ⊠ D′, and the lexicographic product D ◦ D′. The vertex set of each
product is given by

V = V (D)× V (D′) = {(v, v′); v ∈ V (D) and v′ ∈ V (D′)}.

The arcs are given by

A(D□D′) = {(x, x′)(y, y′)|xy ∈ A(D), x′ = y′, or x = y, x′y′ ∈ A(D′)},
A(D ×D′) = {(x, x′)(y, y′)|xy ∈ A(D) and x′y′ ∈ A(D′)},
A(D ⊠D′) = A(D□D′) ∪A(D ×D′),

A(D ◦D′) = {(x, x′)(y, y′)|xy ∈ A(D), or x = y and x′y′ ∈ A(D′)}.

In each case, D and D′ are called factors of the product. The figure below
illustrates the products in the case of paths P3 and P4.

P3

P4

P3□P4

Cartesian product

P3

P4

P3 × P4

Direct product

P3

P4

P3 ⊠ P4

Strong product

P3

P4

P3 ◦ P4

Lexicographic product

3 Proof of the main result

The proof of Theorem 1.1, specifically the forward implications that the
existence of a king in the product implies the existence of the kings in the
factors, relies on the following Lemma.

Lemma 3.1 (Proposition 1.3.2, [3]). Let D be a digraph and let v, w be a
pair of distinct vertices in D. If D has a (v, w)-diwalk W , then D contains
a (v, w)-dipath P such that A(P ) ⊆ A(W ). If D has a closed (v, v)-diwalk
W , then D contains a dicycle C through v such that A(C) ⊆ A(W ).
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3.1 Kings in Cartesian products

The proof of the first equivalence in Theorem 1.1 will be established by the
following two Lemmas.

Lemma 3.2. If v is a k-king in a digraph D and v′ is a k′-king in a digraph
D′, then (v, v′) is a (k + k′)-king in the Cartesian product D□D′.

Proof. Pick any w ̸= v in D and any w′ ̸= v′ in D′. Since v is a k-king in D,
there is an (v, w)-dipath vv1v2 . . . vn−1w of length n ≤ k in D. Similarly,
since v′ is k′-king in D′, there is an (v′, w′)-dipath v′v′1v

′
2 . . . v

′
n′−1w

′ of
length n′ ≤ k′ in D′.

Thus, (v, v′)(v1, v′)(v2, v′) . . . (vn−1, v
′)(w, v′) is a dipath in D□D′ connect-

ing (v, v′) and (w, v′). Similarly, (w, v′)(w, v′1)(w, v
′
2) . . . (w, v

′
n′−1)(w,w

′) is
a dipath in D□D′ connecting (w, v′) and (w,w′).

The two dipaths in D□D′ intersect only at (w, v′). Thus, the concatenated
sequence

(v, v′)(v1, v
′)(v2, v

′) . . . (vn−1, v
′)(w, v′)(w, v′1)(w, v

′
2) . . . (w, v

′
n′−1)(w,w

′)

is a dipath of length n+ n′ ≤ k + k′ connecting (v, v′) and (w,w′).

Now, if either w = v or w′ = v′, the proof is analogous with an exception
of a small detail that either the (v, w)-dipath or the (v′, w′)-dipath is of
length 0.

The procedure from the proof of Lemma 3.2 is illustrated below for D = C3

and D′ = P4.

C3

P4

C3□P4

a b c

d′

c′

b′

a′

Kings in products of digraphs

114



The red dipath ab in C3 lifts to a red dipath (a, a′)(b, a′) in C3□P4. Sim-
ilarly, the cyan dipath a′b′ in P4 lifts to a cyan dipath (b, a′)(b, b′) in
C3□P4. Concatenating the two paths in C3□P4 together yields the dipath
(a, a′)(b, a′)(b, b′) connecting (a, a′) (b, b′).

Lemma 3.3. If (v, v′) is an l-king in the Cartesian product D□D′ of di-
graphs D and D′, then v is a k-king in D and v′ is a k′-king in a digraph
D′ with k + k′ ≤ l.

Proof. Let w ̸= v be a vertex in D and w′ ̸= v′ be a vertex in D′. Since
(v, v′) is an l-king, there exists a dipath

P = (v, v′)(v1, v
′
1)(v2, v

′
2)(v3, v

′
3) . . . (vn−1, v

′
n−1)(w,w

′)

in D□D′ of length n ≤ l connecting (v, v′) and (w,w′).

Consider the sequence vv1v2 . . . vn−1w. From the definition of the Cartesian
product, any two consecutive vertices in the sequence are either identical
or connected by an arc in D. Hence, if we remove all possible immediate
duplications, we will have an (v, w)-diwalk in D of length m ≤ n. By
Lemma 3.1, there is an (v, w)-dipath of length at most k ≤ m ≤ n in D.
Thus, v is a k-king for k ≤ m ≤ n.

Similarly, v′ is a k′-king in D′ for k′ ≤ m′ ≤ n.

Note that n − m is the number of times the dipath P in D□D′ moved
vertically, i.e., the cardinality of the set {i|0 ≤ i ≤ n − 1; vi = vi+1}.
Similarly, n − m′ is the number of time the path in D□D′ moved hor-
izontally, i.e., the cardinality of the set {i|0 ≤ i ≤ n − 1; v′i = v′i+1}.
Thus, (n − m) + (n − m′) = n and thus m + m′ = n. Consequently,
k + k′ ≤ m+m′ = n ≤ l.

The procedure from the proof of Lemma 3.3 is illustrated below.

C3

P4

C3□P4

a b c

d′

c′

b′

a′
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The dipath P = (a, a′)(b, a′)(c, a′)(c, b′)(a, b′)(b, b′) (in red) connects the
5-king (a, a′) with a vertex (b, b′) in C3□P4. The projection of this dipath
into C3 results in a sequence abccab of vertices in C3. Removing one of
the duplicated c’s yields an (a, b)-diwalk abcab of length m = 4. Lemma
3.1 then guarantees the existence of an (a, b)-dipath ab of length k = 1.
Similarly, projecting P into P4 results in a sequence a′a′b′b′b′. Removing
three vertices (one duplicated a′ and two duplicated b′’s) yields an (a′, b′)-
diwalk a′b′ which already is a dipath of length k′ = m′ = 1.

3.2 Kings in strong products

The second equivalence of Theorem 1.1 will be established by the following
two Lemmas.

Lemma 3.4. If v is a k-king in a digraph D and v′ is a k′-king in a digraph
D′, then (v, v′) is a max{k, k′}-king in the strong product D ⊠D′.

Proof. Pick any vertex w ̸= v inD and any w′ ̸= v′ inD′. Since v is a k-king
in D, there is a (v, w)-dipath vv1v2 . . . vn−1w of length n ≤ k in D. Sim-
ilarly, since v′ is k′-king in D′, there is a (v′, w′)-dipath v′v′1v

′
2 . . . v

′
n′−1w

′

of length n′ ≤ k′ in D′. Without loss of generality, assume that n ≤ n′.
Thus, (v, v′)(v1, v′1)(v2, v

′
2) . . . (vn−1, v

′
n−1)(w, v

′
n) is a dipath in D⊠D′ con-

necting (v, v′) and (w, v′n). Furthermore,

(w, v′n)(w, v
′
n+1)(w, v

′
n+2) . . . (w, v

′
n′−1)(w,w

′)

is a dipath in D ⊠D′ connecting (w, v′n) and (w,w′).

The two dipaths in D⊠D′ intersect only at (w, v′n). Thus, the concatenated
sequence

(v, v′)(v1, v
′
1)(v2, v

′
2) . . . (vn−1, v

′
n−1)

(w, vn)(w, v
′
n+1)(w, v

′
n+2) . . . (w, v

′
n′−1)(w,w

′)

is a dipath of length n′ ≤ max{k, k′} connecting (v, v′) and (w,w′).

The remaining cases when either w = v or w′ = v′ are analogous, with
an exception of a small detail that either the (v, w)-dipath or the (v′, w′)-
dipath is of length 0.
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The procedure from the proof of Lemma 3.4 is illustrated below.

C3

P4

C3 ⊠ P4

a b c

d′

c′

b′

a′

The red dipath abc in C3 and the cyan dipath a′b′c′ in P4 create a magenta
dipath (a, a′)(b, b′)(c, c′) in C3⊠P4 and the dipath c′d′ in P4 lifts to a dipath
(c, c′)(c, d′) in C3 ⊠ P4. Concatenating the two paths in C3 ⊠ P4 together
yields the dipath (a, a′)(b, b′)(c, c′)(c, d′) connecting (a, a′) (c, d′).

Lemma 3.5. If (v, v′) is an l-king in the strong product D⊠D′ of digraphs
D and D′, then v is a k-king in D and v′ is a k′-king in a digraph D′ with
k ≤ l and k′ ≤ l.

Proof. The proof is almost identical to the proof Lemma 3.3 for the Carte-
sian product. However, in Lemma 3.3, we could further obtain k + k′ ≤ l.
Here, we can only conclude that k ≤ l and k′ ≤ l because the arcs in D⊠D′

are not only “horizontal” and “vertical”, but also “diagonal”. This is illus-
trated on a simple example below when the magenta dipath (a, a′)(b, b′) in
P2 ⊠ P2 projects into a red dipath ab in D = P2 and a cyan dipath a′b′ in
D′ = P2.

P2

P2

P2 ⊠ P2

a b

b′

a′
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3.3 Kings in lexicographic products

The proof of the third equivalence in Theorem 1.1 will be established by
the following two Lemmas.

Lemma 3.6. If v is a k-king in a digraph D and either

a) v′ is a k′-king in a digraph D′, or

b) v lies on a dicycle of length k′ in D,

then (v, v′) is a max{k, k′}-king in the lexicographic product D ◦D′.

Proof. Pick any vertex (w,w′) in D ◦D′. First, assume v ̸= w. Since v is
a k-king in D, there is an (v, w)-dipath vv1v2 . . . vn−1w of length n ≤ k in
D. Thus, (v, v′)(v1, w′)(v2, w′) . . . (vn−1, w

′)(w,w′) is a dipath of length n
in D ◦D′ connecting (v, v′) and (w,w′).

Second, assume v = w and that v′ is k′-king in D′. Thus, similarly as in the
proof of Lemma 3.2, there is an (v′, w′)-dipath v′v′1v

′
2 . . . v

′
n′−1w

′ of length
n′ ≤ k′ in D′. Thus, (v, v′)(v, v′1)(v, v

′
2) . . . (v, v

′
n′−1)(v, w

′) is a dipath in
D ◦D′ connecting (v, v′) and (w,w′).

Finally, assume v = w and that v lies on a dicycle of length k′. Any
vertex of the dicycle can act as a starting vertex and thus v lies on a closed
(v, v)-dipath vv1v2 . . . vk′−1v of length k′. Hence,

(v, v′)(v1, w
′)(v2, w

′) . . . (vk′−1, w
′)(v, w′)

is a dipath of length k′ in D ◦D′ connecting (v, v′) and (w,w′).

The two crucial procedures from the proof of Lemma 3.6 are illustrated
below.

C3

P4

C3 ◦ P4

a b c

d′

c′

b′

a′

C3

P4

C3 ◦ P4

a b c

d′

c′

b′

a′
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The vertex (a, d′) in the lexicographic product C3 ◦ P4 is a 3-king despite
the fact that d′ is not a king in P4. For example, we can connect (a, d′)
to (c, a′) by a dipath of length 2 because a is a 2-king in C3. And, we can
connect (a, d) to (a, a′) by a dipath of length 3 because a lies on a dicycle
of length 3 in C3.

Lemma 3.7. If (v, v′) is a k-king in the lexicographic product D ◦ D′ of
digraphs D and D′, then v is a k-king in D, and either

a) v′ is a k′-king in a digraph D′ with k′ ≤ k, or

b) v lies on dicycle of length at most k.

Proof. The proof that v is a k-king is analogous to the proof of the corre-
sponding part in Lemma 3.3.

Now, let w′ ̸= v′ be any vertex in D′ and w = v. Since (v, v′) is an k-king,
there exists a directed path (v, v′)(v1, v′1)(v2, v

′
2) . . . (vn−1, v

′
n−1)(v, w

′) in
D ◦D′ of length n ≤ k connecting (v, v′) and (v, w′). If v = v1 = v2 = v3 =
· · · = vn−1, then, as before, the vertex v′ is a k-king in D′. Otherwise, the
vertex v must lie on a dicycle of length at most k.

The proof of Lemma 3.7 is illustrated below.

C3

P4

C3 ◦ P4

a b c

d′

c′

b′

a′

C3

P4

C3 ◦ P4

a b c

d′

c′

b′

a′

The vertex (a, a′) in the lexicographic product C3 ◦ P4 is a 3-king. It
can reach the vertex (a, d′) either by a dipath that is entirely in the fiber
{a}×P4, or by a dipath that goes outside of the fiber {a}×P4. In the first
case, the dipath projects naturally into an (a′, d′)-dipath in P4 of length
3. In the second case, the dipath projects into a dicycle in C3 of length 3
containing a.
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3.4 Kings in direct products

The proof of the last implication of Theorem 1.1 is analogous to the proofs
of Lemma 3.3 and Lemma 3.5.

While Theorem 1.2 gives the condition on when the implication can be re-
versed, unlike Theorem 1.1, Theorem 1.2 does not provide any quantitative
information about the nature of the kings in the product. On an example
of C3×C4 below, mentioned already in [13], we see that every vertex in C3

is a 2-king, every vertex in C4 is a 3-king, yet every vertex in C3 × C4 is
11-king.

C3

C4

a b c

d′

c′

b′

a′
C3 × C4

This seems to indicate that the only bound for the kings in the direct
product D×D′ is k = ∥D∥ · ∥D′∥− 1. However, it is not known how sharp
this bound is.
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