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On a graph isomorphic to NO+(6, 2)

Federico Romaniello∗ and Valentino Smaldore

Abstract. Let Q+(2n − 1, 2) be a non-degenerate hyperbolic quadric of
PG(2n − 1, 2). Let NO+(2n, 2) be the tangent graph, whose vertices are
the points of PG(2n−1, 2)\Q+(2n−1, 2) and two vertices u, v are adjacent
if the line joining u and v is tangent to Q+(2n−1, 2). Then NO+(2n−1, q)
is a strongly regular graph. Let V4

2 be the Veronese surface in PG(5, q), and
M3

4 its secant variety. When q = 2, |Q+(5, 2)| = |M3
4| = 35. In this paper

we define the graph NM3
4, with 28 vertices in PG(5, 2) \M3

4 and with the
analogue incidence rule of the tangent graph. Such graph is isomorphic to
NO+(6, 2).

1 Introduction

A strongly regular graph with parameters (v, k, λ, µ) is a graph with v ver-
tices where each vertex is incident with k edges, any two adjacent vertices
have λ common neighbours, and any two non-adjacent vertices have µ com-
mon neighbours. Strongly regular graphs were introduced by R. C. Bose
in [3] in 1963, and ever since they have intensively been investigated. In
particular, the eigenvalues of the adjacency matrix of a strongly regular
are known; see [4]: a strongly regular graph G with parameters (v, k, λ, µ)
has exactly three eigenvalues: k, θ1 and θ2 of multiplicity 1, m1 and m2,
respectively, where:

θ1 =
1

2

[
(λ− µ) +

√
(λ− µ)2 + 4(k − µ)

]
,

θ2 =
1

2

[
(λ− µ)−

√
(λ− µ)2 + 4(k − µ)

]
,

m1 =
1

2

[
(v − 1)− 2k − (v − 1)(λ− µ)√

(λ− µ)2 + 4(k − µ)

]
,

m2 =
1

2

[
(v − 1) +

2k − (v − 1)(λ− µ)√
(λ− µ)2 + 4(k − µ)

]
.
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The spectrum of a strongly regular graph is the triple (k, θm1
1 , θm2

2 ). There-
fore, two strongly regular graphs with the same parameters are cospectral,
that is, they have the same spectrum. Two isomorphic graphs are always
cospectral, but the converse is not always true. Indeed, even in the family
of strongly regular graphs there are examples with same parameters, but
not isomorphic.

Several strongly regular graphs derive from finite polar spaces, in particular
from collinearity graphs or incidence graphs. The tangent graph of a polar
space P embedded in a projective space is defined to be the graph in which
the vertices are the non-isotropic points with respect to the polarity defining
P, and two vertices are adjacent if and only if they lie on the same tangent
line to P. In [4] it is proved that in some cases tangent graphs are strongly
regular. In this paper we focus on the graph NO+(2n, 2), belonging to a
non-degenerate hyperbolic quadric Q+(2n− 1, 2).

2 The graph NO+(6, 2)

Consider a non-degenerate hyperbolic quadratic form in PG(2n − 1, 2),
the corresponding quadric Q+(2n − 1, 2) has 22m−1 + 2m−1 − 1 isotropic
points. The graph NO+(2n, 2) is the strongly regular graph with vertex set
PG(2n− 1, 2) \Q+(2n− 1, 2) where two vertices are adjacent if the points
are orthogonal. NO+(2n, 2) has the following parameters:

v = 22n−1 − 2n−1,

k = 22n−2 − 1,

λ = 22n−3 − 2,

µ = 22n−3 + 2n−2.

The following lemma is a straightforward consequence of the construction
of NO+(2n, 2) since the group PΩ+(2n, 2) acts transitively on the external
points of Q+(2n − 1, 2) and it preserves the adjacency properties of the
graph.

Lemma 2.1. The simple group PΩ+(2n, 2) is an automorphism group of
NO+(2n, 2).

In the case n = 3 the parameters of NO+(6, 2) are (28, 15, 6, 10) while the
spectrum is (15,−57, 120). From Lemma 2.1 we know that PΩ+(6, 2) ∼= A8

acts on NO+(6, 2) as an automorphism group. The full-automorphism
group of the graph is PGO+(6, 2) ∼= S8 (see [6], Theorem 2).
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3 The graph NM3
4

The Veronese surface of all conics of PG(2, q), is the variety

V4
2 = {(a2, b2, c2, ab, ac, bc)|(a, b, c) ∈ PG(2, q)} ⊆ PG(5, q).

The mapping

µ :

{
PG(2, q)→ PG(5, q)

(x1, x2, x3) 7→ (x2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3).

is called the Veronese embedding of PG(2, q). The notation V2n

n = V4
2

follows the one described in [8, Notation 4.6]. The variety V4
2 consists of

q2 + q + 1 points and its stabilising subgroup of V4
2 in PGL(6, q) arises by

lifting from the group of collineations of PG(2, q).

Theorem 3.1 ([2, Proposition 4]). If y 7→ yA is a linear collineation of
PG(2, q) with A = (aij), i, j = 1, 2, 3, the Veronese surface V4

2 is stabilised
by the lifted linear collineation x 7→ xB of PG(5, q) given by the matrix

B=




a2
11 a2

12 a2
13 a11a12 a11a13 a12a13

a2
21 a2

22 a2
23 a21a22 a21a23 a22a23

a2
31 a2

32 a2
33 a31a32 a31a33 a32a33

2a11a21 2a12a22 2a13a23 a11a22+a21a12 a11a23+a21a13 a12a23+a22a13

2a11a31 2a12a32 2a13a33 a11a32+a31a12 a11a33+a31a13 a12a33+a32a13

2a21a31 2a22a32 2a23a33 a21a32+a31a22 a21a33+a31a23 a22a33+a32a23




The group of lifted collineations has the following orbits on the

q5 + q4 + q3 + q2 + q + 1

conics of PG(2, q):

• O1 := q2 + q + 1 double lines (points of V4
2 );

• O2 := 1
2 (q

2 + q + 1)(q2 − q) pairs of imaginary lines;

• O3 := 1
2 (q

2 + q + 1)(q2 + q) pairs of intersecting lines;

• O4 := q5 − q2 non-degenerate conics.
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The set of all degenerate conics O1∪O2∪O3 =M3
4 is called secant variety

and |M3
4| = |Q+(5, q)| = (q2 + 1)(q2 + q + 1), see [8, Theorem 4.18]. The

secant varietyM3
4 is a hypersurface of degree 3 and dimension 4. We may

identify points of PG(5, q) with 3× 3 symmetric matrices over GF (q), by:

(X1, X2, X3, X4, X5, X6)←→




X1 X4 X5

X4 X2 X6

X5 X6 X3


 .

In this representation, the Veronese surface V4
2 correspond to the matrices




x2
1 x1x2 x1x3

x1x2 x2
2 x2x3

x1x3 x2x3 x2
3


 ,

whileM3
4 is a cubic hypersurface with equation

∣∣∣∣∣∣

X1 X4 X5

X4 X2 X6

X5 X6 X3

∣∣∣∣∣∣
= 0. (1)

With the above notation, the orbit O1 = V4
2 coincides with the 3 × 3

symmetric matrices over GF (q) of rank 1, while O2 and O3 with the 3× 3
symmetric matrices over GF (q) of rank 2, and O4 with the 3×3 symmetric
matrices over GF (q) of rank 3. For more details on the Veronese surface
and the secant variety, see [5] and [8]. Moreover, the automorphism group
and the orbits of its action on conics in PG(2, q) may be further explored
in [7, Table 7.2].

3.1 The case q = 2

When q = 2, the set PG(5, 2) \M3
4 has cardinality 28, as |V (NO+(6, 2))|,

because |Q+(5, 2)| = |M3
4| = 35. We now construct the graph NM3

4 with
the same procedure of the tangent graph:

V (M3
4) = PG(5, 2) \M3

4;

E(M3
4) = {(x, y)|x, y ∈ V (M3

4), |⟨x, y⟩ ∩M3
4| = 1}.

The lifted automorphism group is represented by the matrices

B =




a2
11 a2

12 a2
13 a11a12 a11a13 a12a13

a2
21 a2

22 a2
23 a21a22 a21a23 a22a23

a2
31 a2

32 a2
33 a31a32 a31a33 a32a33

0 0 0 a11a22 + a21a12 a11a23 + a21a13 a12a23 + a22a13

0 0 0 a11a32 + a31a12 a11a33 + a31a13 a12a33 + a32a13

0 0 0 a21a32 + a31a22 a21a33 + a31a23 a22a33 + a32a23




,
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and the 4 orbits have the following properties:

1. |O1| = |O2| = 7, |O3| = 21, |O4| = 28;

2. O2 is the nuclei plane N : X1 = X2 = X3 = 0;

3. O2 ∪ O4 is the Klein Quadric
K : X2

1+X2
2+X2

3+X1X2+X2X3+X1X3+X1X6+X2X5+X3X4 = 0.

It is possible to describe the graph NM3
4 in other ways and this is investi-

gated deeply in the next subsection.

3.2 Alternative descriptions of NM3
4

We give alternative descriptions of the graph NM3
4, each one highlighting

a different property of it.

SinceM3
4 ∩ K = O2 = N , the secant variety always shares a plane with a

Klein Quadric. Starting from the quadric Q+(5, 2) in its canonical equation
X1X6 +X2X5 +X3X4 = 0, we consider the Veronese hypersurface having
exactly the plane N : X1 = X2 = X3 = 0 in common with Q+(5, 2). It is
possible now to give another construction for the graph NM3

4, focusing on
Q+(5, 2) : X1X6 +X2X5 +X3X4 = 0 and N : X1 = X2 = X3 = 0:

V (M3
4) = Q+(5, 2) \N ;

E(M3
4) = {(x, y)|x, y ∈ V (M3

4), |⟨x, y⟩ ∩N | = 1}
∪ {(x, y)|x, y ∈ V (M3

4), |⟨x, y⟩ ∩Q+(5, 2)| = 2}.

It is also possible to describe the graph in the representation as 3 × 3
matrices over Fq:

• V (M3
4) is the set of the non-singular symmetric matrices of order 3

over Fq;

• E(M3
4) = {(A,B)|A,B ∈ V (M3

4), A+B is singular }.

Moreover, observing that (M3
4)

C ∪ N = Q+(5, 2), where (M3
4)

C is the
complement ofM3

4, the vertices of the graph can also be described as the
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points of Q+(5, 2) \N , and two vertices u and v are adjacent if u ̸∈ v⊥ or
u ∈ ⟨v, v⊥ ∩N⟩, where ⊥ is the polarity induced by Q+(5, 2).

In what follows we will use the latter description of NM3
4, as it is the most

convenient one for the analysis of the strong regularity of the graph (cf.
Section 4).

4 Strong regularity of NM3
4

In this section we will focus on the strong regularity of NM3
4, using the

latter representation described in Subsection 3.2.

Theorem 4.1. The graph NM3
4 is strongly regular with parameters

(v, k, λ, µ) = (28, 15, 6, 10).

Proof. Each of the 28 vertices lies on 9 isotropic lines. Fix P ∈ Q+(5, 2)\N
The polar hyperplane P⊥ meets the quadric in a cone having vertex in P
and a hyperbolic quadric Q+(3, 2) as base. Among the 9 isotropic lines
through P , 3 meet the nuclei plane in an isotropic line of Q+(3, 2). Hence,
we have 3 neighbours so represented. The other 6 lines define 12 non-
neighbours of P , and all the other 12 points generate a secant line with
P , so that the graph is 15-regular. Given two vertices u and v, to get the
parameters λ and µ, we may consider separately the two type of adjacencies,
since uv is an edge if u ̸∈ v⊥ or u ∈ ⟨v, v⊥ ∪N⟩. As u⊥ meets Q+(5, 2) in a
cone with vertex P and base Q+(3, 2), we have that u⊥ ∩N is a line, and
⟨u, u⊥ ∪N⟩ is a plane. In what follows, πu stands for the projective plane
πu = ⟨u, u⊥ ∪N⟩.

We start by calculating µ, the number of common neighbours of non-
adjacent vertices. Let w ∈ Q+(5, 2) \ N be a common neighbour of the
non-adjacent vertices u and v, with u ∈ v⊥ \ πv and v ∈ u⊥ \ πu. Hence,
we must distinguish different cases:

Case 1: w ∈ πu and w ∈ πv

Since ⟨u,N⟩ and ⟨v,N⟩ are two solids contained in the 4-space ⟨u, v,N⟩,
their intersection is the plane N . Therefore, πu∩πv ⊆ N , and we have
no such common neighbours.
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Case 2: w ∈ πu and w /∈ v⊥ or w ̸∈ u⊥ and w ∈ πv We will inves-
tigate only the first subcase, the second one is analogous by switching
the role of u and v. Suppose that w ∈ πu and w /∈ v⊥, then we have
exactly two such common neighbours. Hence |πu| = 7 and |πu\N | = 4.
Moreover the projective plane πv meets πu in a line, passing through
u and meeting N in a point, so |(πu \ (N ∪ v⊥))| = 2.

Case 3: w ̸∈ u⊥ and w /∈ v⊥

Since u⊥ ∩ v⊥ = ⟨u, v⟩⊥, it is a solid that meets the quadric in a cone
having as vertex the line ⟨u, v⟩ and base a Q+(1, 2), and so |u⊥ ∩ v⊥|
has 11 points on the quadric Q+(5, 2). Moreover, u⊥ cuts a cone
with vertex u and base a Q+(3, 2), and u⊥ has 19 points on Q+(5, 2).
Hence we get 27 isotropic points on u⊥ ∪ v⊥, while the space (u⊥ ∪
v⊥)∩N consists on two concurrent lines. Then, the number of common
neighbours in Case 3 is equal to 28−|(u⊥∪v⊥)\N | = 28−(27−5) = 6.

In conclusion µ = 0 + 2 + 2 + 6 = 10.

To calculate the value of λ we remark that two adjacent vertices may lie in
both a secant line, or in an isotropic line having the third point in N . Let
w ∈ Q+(5, 2) \N be a common neighbour of the adjacent vertices u and v,
and let u ∈ πv and v ∈ πu.

Different cases arises:

Case 1: w ∈ πu and w ∈ πv

In this case πu = πv and we have exactly two more common neighbours
in πu \N

Case 2: w ∈ πu and w /∈ v⊥ or w ̸∈ u⊥ and w ∈ πv

We will investigate only the first subcase, the second one is analogous
by switching the role of u and v. Suppose that w ∈ πu and w /∈ v⊥.
In this case πu ⊆ v⊥, and there are no common neighbours.

Case 3: w ̸∈ u⊥ and w /∈ v⊥

As before we have 27 isotropic points on u⊥ ∪ v⊥, but the space (u⊥ ∪
v⊥) ∩ N consists on the line πu ∩ N . Then, the number of common
neighbours in Case 3 is equal to 28−|(u⊥∪v⊥)\N | = 28−(27−3) = 4.
The number of common neighbours is 2 + 0 + 0 + 4 = 6.
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Let now w ∈ Q+(5, 2) \N be a common neighbour of the adjacent vertices
u and v, and let u ̸∈ v⊥ and v ̸∈ u⊥.

Again, we must distinguish different cases:

Case 1: w ∈ πu and w ∈ πv

Since ⟨u,N⟩ and ⟨v,N⟩ are two solids contained in the 4-space ⟨u, v,N⟩,
their intersection is the plane N . Therefore, πu∩πv ⊆ N , and we have
no such common neighbours.

Case 2: w ∈ πu and w /∈ v⊥ or w ̸∈ u⊥ and w ∈ πv

We will investigate only the first subcase, the second one is analogous
by switching the role of u and v. Suppose that w ∈ πu and w /∈ v⊥,
then we have exactly one such common neighbour. Firstly |πu| = 7,
and v⊥ meets the plane πu in a line ℓ. Then the common neighbours
are exactly |πu \ (N ∪ ℓ ∪ {u})| = 1.

Case 3: w ̸∈ u⊥ and w /∈ v⊥

u⊥ and v⊥ are two 4-spaces meeting the quadric in two cones with
the point as vertex and a Q+(3, 2) as base. Since u⊥ ∩ v⊥ is a solid,
u⊥∩v⊥ meet the quadric in 9 points. Hence we get 29 isotropic points
on u⊥ ∪ v⊥, while the space (u⊥ ∪ v⊥)∩N consists on two concurrent
lines. Then, the number of common neighbours in Case 3 is equal to
28−|(u⊥ ∪ v⊥) \N | = 28− (29− 5) = 4. Even in this case the number
of common neighbours is 0 + 1+ 1+ 4 = 6, thus we can conclude that
λ = 6.

5 The isomorphism issue

By a classical result in graph theory, two graphs are isomorphic if and only
if their adjacency matrices are similar, see [1]. There are 4 known non-
isomorphic strongly regular graphs with parameters (28, 15, 6, 10) in the
Spence’s database (see [9]). Looking at the adjacency matrices ofNO+(6, 2)
and NM3

4 it is straightforward to check the similarity between the two
matrices.

On a graph isomorphic to NO+(6, 2)

158



One isomorphism between these two graphs is given by the following:

(1, 0, 1, 0, 1, 1) 7−→ (1, 1, 0, 0, 1, 1) (1, 1, 1, 0, 0, 1) 7−→ (0, 0, 1, 0, 0, 0)
(0, 1, 1, 0, 1, 1) 7−→ (1, 1, 1, 1, 0, 1) (0, 1, 0, 1, 1, 0) 7−→ (1, 1, 0, 1, 0, 0)
(1, 0, 0, 1, 0, 1) 7−→ (0, 1, 0, 0, 0, 1) (0, 0, 1, 1, 0, 0) 7−→ (0, 1, 1, 0, 0, 1)
(1, 1, 0, 1, 1, 0) 7−→ (1, 1, 1, 0, 1, 1) (1, 0, 1, 1, 0, 0) 7−→ (0, 1, 0, 1, 0, 0)
(1, 0, 0, 1, 1, 1) 7−→ (1, 0, 1, 1, 0, 1) (0, 0, 1, 1, 1, 0) 7−→ (1, 0, 0, 1, 1, 0)
(1, 1, 0, 1, 0, 1) 7−→ (0, 1, 0, 0, 0, 0) (0, 1, 1, 1, 0, 0) 7−→ (0, 1, 1, 0, 0, 0)
(0, 1, 0, 1, 1, 1) 7−→ (1, 0, 0, 0, 1, 0) (1, 0, 1, 1, 1, 0) 7−→ (1, 0, 1, 0, 0, 0)
(1, 1, 1, 1, 0, 0) 7−→ (0, 1, 0, 1, 0, 1) (0, 0, 1, 1, 0, 1) 7−→ (0, 0, 1, 0, 1, 0)
(0, 0, 1, 1, 1, 1) 7−→ (1, 1, 0, 0, 0, 0) (0, 1, 1, 1, 0, 1) 7−→ (0, 0, 1, 0, 1, 1)
(0, 1, 0, 0, 1, 0) 7−→ (1, 1, 1, 0, 0, 0) (1, 0, 0, 0, 0, 1) 7−→ (0, 1, 1, 1, 1, 1)
(1, 1, 0, 0, 1, 0) 7−→ (1, 1, 0, 1, 1, 1) (1, 1, 1, 1, 1, 1) 7−→ (1, 1, 1, 1, 1, 0)
(1, 0, 0, 0, 1, 1) 7−→ (1, 0, 0, 0, 0, 0) (1, 1, 0, 0, 0, 1) 7−→ (0, 1, 1, 1, 1, 0)
(0, 1, 0, 0, 1, 1) 7−→ (1, 0, 1, 1, 1, 1) (0, 1, 1, 0, 1, 0) 7−→ (1, 0, 1, 0, 1, 0)
(1, 0, 1, 0, 0, 1) 7−→ (0, 0, 1, 0, 0, 1) (1, 1, 1, 0, 1, 0) 7−→ (1, 0, 0, 1, 0, 0)

Since adjacencies in bothNO+(6, 2) andNM3
4 are defined also in the nuclei

plane N , we now define the graphs ̂NO+(6, 2) and N̂M3
4, with the same

vertex sets of NO+(6, 2) and NM3
4 and such that in both cases two vertices

u and v are adjacent if and only if the third point on the line uv is in N .

Lemma 5.1. N̂M3
4
∼= ̂NO+(6, 2) and they both consists of 7 copies of K4.

Proof. Firstly, we prove that N̂M3
4 and ̂NO+(6, 2) are 3-regular.

Let P ∈ V (N̂M3
4), then P⊥ meets Q+(5, 2) in a cone with vertex P and

base Q+(3, 2), hence P⊥ ∩ N is a line, say ℓ. Now suppose that P ∈
V ( ̂NO+(6, 2)), we have that P⊥ meets Q+(5, 2) in a parabolic quadric
Q(4, 2), and also in this case P⊥ ∩N is a line, say ℓ′. Thus the neighbours
of P are the three point on the line from P to ℓ in the former case, and to
ℓ′ in the latter.

Now, the space joining P and ℓ is a projective plane π = ⟨P, ℓ⟩, made of
7 points: P , the three points of ℓ, and the three neighbours of P . Let
R be one of the neighbours of P . The plane ⟨R, ℓ⟩ meets π in 5 points:
P , R and the three points on ℓ. Thus ⟨R, ℓ⟩ must be π, and P and its

neighbours are a connected component isomorphic to K4 in N̂M3
4. The

same argument holds also for ⟨P, ℓ′⟩ and ̂NO+(6, 2) is made of connected
components isomorphic to K4.
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We can see that each connected component K4 correspond uniquely to a

line of N , and an isomorphism between the graphs ̂NO+(6, 2) and N̂M3
4

sends one connectedK4 of ̂NO+(6, 2) in one connected component of N̂M3
4.

6 Conclusion

It is shown that the two strongly regular graphs NO+(6, 2) and NM3
4, aris-

ing from the Klein Quadric and the Veronese hypersurface, are isomorphic.
By the way, even for q > 2, |M3

4| = |Q+(5, q)| = (q2 + 1)(q2 + q + 1).
It is natural to ask what is the connection between this two objects, in
a pure geometrical point of view. Moreover, further researches should
show whether there is a connection between the Klein representation of
the (q2 + 1)(q2 + q + 1) lines of PG(3, q) and the Veronese embedding of
the (q2 + 1)(q2 + q + 1) (degenerate) conics of PG(2, q).
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